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1. Introduction

The quark-parton model is still at the basis of most of our attempts to describe hadronic phenomena.
It is surprising that a model with essentially noninteracting parts describes so many properties which are
not so easy to address in terms of the entities, i.e. the hadrons themselves. There is a simple and
beautiful explanation by the notion of asymptotic freedom [1] for nonabelian gauge theories, in
particular for quantum chromodynamics (QCD). It does, however, imply that the space-time scale
where theory dwells is rather different from the one where the experimental detector setups are
working. Thus while perturbative QCD-calculations can be trusted on the scale of maybe fractions of a
fermi, the outcome of the hard processés are measured very far away, indeed. In the meantime a
large amount of frustrating changes seems to have occurred. The main observation seems to be that
there is no longer a partonic picture around. Nevertheless, one may hope that there are more or less
pronounced traces of the basic dynamics available in the final state hadron distributions. Many of the

* Present address: CERN, Theory Division, CH-1211 Geneva 23, Switzerland.
** Present address: DESY, Theory Group, Notkestrasse 85, D-2000 Hamburg 52, Germany.

0 370-1573/83/0000-0000/$34.50 © 1983 North-Holland Publishing Company



PARTON FRAGMENTATION AND STRING DYNAMICS

B. ANDERSSON, G. GUSTAFSON, G. INGELMAN and T. SIOSTRAND
Lund, Sweden

CLASSICAL STRING PHENOMENOLOGY. HOW STRINGS WORK

Contents:

B. Andersson et al., Parton fragmentation and string dynamics

1. Introduction

2. Jet fragmentation in 1+ 1 dimensions

3. The tunneling process for local massive g§ production

4. Gluon fragmentation

5. Hadron fragmentation in hadronic collisions and DIS

6. High-p, scattering and topological properties of the colour
field

References

Abstract:

X. ARTRU

Orsay, France

Received March 1983

33
36
68
82
116

140
143

X. Artru, Classical string phenomenology. How strings work
1. Introduction

2. Topology of the String Model

3. Classical motion of the free string

4. Classical rules for the interactions

5. The yo-yo model

6. Summary

References

147
148
150
161
164
169
170

While much has been learned recently about quark and gluon interactions in the framework of perturbative Quantum Chromodynamics, the
relation between calculated parton properties and observed hadron densities involves models where dynamics and jet empirical rules have to be
combined. The purpose of this article is to describe a presently successful approach which is based on a cascade jet model using String dynamics. It
can readily lead to Monte Carlo jet programmes of great use when analyzing data. Production processes in an iterative cascade approach, with
tunneling in a constant force field, are reviewed. Expected differences between quark and gluon jets are discussed. Low transverse momentum
phenomena are also reviewed with emphasis on hyperon polarization. In so far as this approach uses a fragmentation scheme based on String
dynamics, it was deemed appropriate to also include under the same cover a special report on the Classical theory of relativistic Strings, seen as the
classical limit of the Dual Resonance model. The Equations of motion and interaction among strings are presented.

Single orders for this issue

accompanied by check.

Single issue price Dfl. 79.00, postage included.

PHYSICS REPORTS (Review Section of Physics Letters) 97, Nos. 2 & 3 (1983) 31-171.

Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must be




34 B. Andersson et al., Parton fragmentation and string dynamics

tests of the theory, in particular of the perturbative QCD structure, contains e.g. nonscaling deviations
from the parton model.

There are at this point already some difficulties because it is well-known that any finite energy
hadronic distribution will contain nonscaling contributions, sometimes to an even larger degree than the
inherent scale breaking effects of the theory. Further the pencilsharp energy and momentum dis-
tributions from the single partons are essentially distorted, widened in transverse directions and even
the basic quantum numbers like charge and strangeness etc. seem to have been transported sometimes
rather far away in longitudinal rapidity space. It has therefore become increasingly obvious over the
years that in order to compare experiment to basic theory, it is necessary to have reliable descriptions of
the transfer from the partonic stage to the hadronic one, i.e. to have consistent models for the process
of parton fragmentation.

Such models may on the one hand be looked upon solely as phenomenological parametrizations and
rules of thumb in order to obtain a translation from one language to another. As such they are useful
for analysis of experiment as well as for the planning. On the other hand one may as always in
connection with phenomenology try to obtain a dynamical framework that serves as a motivation and a
generalizing principle for the constructions.

It should be kept in mind, however, that there are no easily available measures of the success of such
a venture. As Bacon told us a long time ago, it is actually only possible to learn that one is wrong by a
comparison between model calculations and experimental findings. If the prediction agrees there is no
reassurance that one is even working in the right basic direction (although there is evidently a possible
reason to feel some confidence!).

A modest measure of success would be a demand that the number of phenomenological parameters
and the variation in size of their values are nonincreasing functions of time as well as the number of
independent experimental findings. It is also of evident interest that the same basic scheme is applicable
in different contexts such as different partonic processes and different parts of phase-space. Several
schemes with a more or less profound theoretical foundation have been suggested but we will in this
review be concerned only with iterative cascade jet models based upon string dynamics. The present
experience from these models shows that at least the above-mentioned criteria for success are fulfilled.

We will in this review mostly discuss a possible dynamical framework behind the models and we will
only use comparisons to data in order to demonstrate matters of principle. One of the nice features of
the models is their stochastic structure which readily lends itself to an implementation in terms of
computer generation. Several such Monte Carlo jet programs are available [2] for the interested reader
to make much more detailed comparisons.

Our approach will primarily be of a semi-classical nature, i.e. we will at most places make use of a
classical dynamical framework for our considerations. We will, however, at all necessary places point to
the basic quantum mechanical constraints.

It is well-known that by means of a careful choice of dynamical variables it is often possible to
circumvent such constraints. As an example we note that it is in general not possible to give
independent values to canonically conjugate variables such as momentum (p) and position (x) due to
Heisenberg’s uncertainty principle:

Ap-Ax=1. (1.1)

It is on the other hand for a large energy (E) particle possible to give values to rapidity (Ay = Ap/E) and
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position [3] up to a degree of precision determined by the size of 1/E:
Ax-Ay=1/E. 1.2)

Therefore, in general longitudinal degrees of freedom may in high energy experiments be described
essentially in a classical language. For transverse momentum properties and for spin it is necessary,
however, to keep track of quantum mechanics. Further, for questions related to the density of states
and the level schemes, it is also necessary to take quantum mechanics fully into account. Fortunately, it
is well-known ever since the first cosmic ray interactions in emulsion plates became available, that the
main dynamics seem to be of a one-dimensional nature.

A word of warning may, however, once again be in place. As long as only the properties of “all
particles”, “all charged particles” or ‘“all pions” in hadronic events are considered, it is seldom
necessary to go outside the time-honoured incoherent longitudinal phase-space dynamics to describe the
data. Features of the fragmentation dynamics which contains more information and necessitates a more
sophisticated description are e.g.

1. Strangeness—antistrangeness, baryon—-antibaryon and heavy quark production (in particular cor-
relation studies). Because strange particles and baryons are more rare, such pairs are often correlated
and can exhibit the local properties of the production process. Also the larger masses imply that the
particles carry more information on the force fields between the partons.

2. Vector meson production studies, which more directly exhibit the quantum number and energy-
momentum flow of the original partons than their final decay products.

3. Transverse momentum correlations, in particular in connection with heavy particles, which should
exhibit degrees of freedom in the force fields like soft gluon emission etc.

4. Polarization properties, which exhibit further degrees of freedom than the purely kinematical
energy momentum flows.

This part is organized into five sections besides this Introduction.

In section 2 we discuss in some detail the properties of iterative cascade jets, with emphasis on the
longitudinal degrees of freedom. We provide a dynamical picture in space-time and energy-momentum
space, based upon string dynamics and we compare to different schemes that have been suggested. We
also consider in some detail a scheme which is symmetric with respect to particle generation from the
quark and antiquark ends in a two-jet system.

In section 3 we consider the production as a tunneling process in a constant force field. We also
discuss the ratio of vector to pseudoscalar meson production in a jet as well as a simple mechanism for
the production of baryon—antibaryon pairs.

In section 4 we extend the model to processes containing gluons and consider different models for
hard and soft gluon emission as well as the dynamical implications. We discuss the possibility to
construct observables which are insensitive to the fragmentation process, and the possibility to
determine the strong coupling constant a, from the hadronization properties.

In section 5 we exhibit a possible dynamical mechanism in low-p; hadronic interactions and discuss
in some detail the ensuing model which usually is referred to as the fragmentation model. We consider a
simple mechanism for polarization in hyperon production and the consequences of it.

In section 6 we point to an inherent property of fragmentation schemes based upon string dynamics,
i.e. that the final state particles stem from the confined force fields between the partons. The fact that
the properties of a confined force field are not determined solely by the position of the charges means
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that it is necessary to consider field topological properties, i.e. the way the fields are spanned and the
way the colour flow is directed along the fields, in order to describe the fragmentation in complicated
partonic events like high-p, etc. Since the investigations of these features have just started, we only
comment upon a few results for the total ensuing event structure in high-p, events.

2. Jet fragmentation in 1+ 1 dimensions

Consider a quark q and an antiquark § going out back-to-back in the overall CM frame, i.e. the
typical situation in an e€"e -annihilation event. Because of the three-gluon coupling (or vacuum
pressure, depending on the point of view), the colour flux lines will not spread out over all space, as the
electromagnetic field lines do, but rather be constrained to a thin tubelike region.

Within this tube, new qg-pairs can be created from the available field energy. Thus the original
system breaks into smaller and smaller pieces, until only ordinary hadrons remain. Some of these
so-called primary hadrons may be unstable and decay further into the stable hadrons, leptons and
photons that are actually observed. In the end, these particles come out essentially aligned along the
original qg-axis, with transverse momenta of around 400 MeV.

In section 3 we will argue that transverse momentum arises naturally from a tunneling mechanism for
qqg-pair production. The resulting p,-spectrum for the quarks becomes a Gaussian, with the transverse
momenta of the q and g of a pair balancing each other. The p, of a primary hadron is then found as the
vectorial sum of constituent quarks p,’s. Similarly, the tunneling production mechanism suggests that
the production of ui-, dd- and ss-pairs should be in proportions 1:1:1/3.

Let us for a moment accept these assumptions so that we may consider the longitudinal frag-
mentation properties without bothering about the two transverse dimensions, except that we every-
where have to use transverse mass m,, with m3 = m?+ p?, rather than just mass m. What remains is
then a problem in one time and one space dimension.

For further discussions it is then useful to introduce lightcone variables in space-time x™ = ¢+ x and
in momentum space p* = E *p. The main advantage of working with these variables is that they
transform simply under a longitudinal boost: x*’' = k*'x* and p*' = k*'p*, where k = (1 + B)/(1 - B))'*
for a boost with velocity B. In particular, variables z* introduced here for the energy-momentum
fractions taken by the hadrons, i.e. 2™ = pPhadron/Piorar, Will be invariant. Another useful variable, related
to the ones above, is rapidity

.
=11n<———BE+ >=lln<L_) @.1)
2 \E-p/ 27\p

again with simple transformation properties, y’'=y+In k. Historically, a description of jet frag-
mentation as a stochastical process was first attempted by Krzywicki and Petersson [4] for meson
fragmentation in hadronic collisions. This idea was applied to quark fragmentation by Niedermayer [5].
The process studied is of the type jet—hadron + remainder-jet, where the remainder-jet is assumed to
fragment further like a scaled-down version of the original jet. This iterative structure can be treated by
means of integral equations for the hadron distributions. This approach seems to imply an “outside-in”
cascade, i.e. a cascade where the particles with large energy, near “the endpoints” of the jet system, are
the ones to be produced first. Bjorken [6] later argued that Lorentz invariance required the breakup to
start in the central region and to spread outwards as an “inside-out” cascade. Consequently, at this
point there seems to be a conflict, at least in principle.
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Following the historical evolution rather than the logical one, we will in section 2.1 discuss the
integral equation approach and in section 2.2 consider a model for an inside-out cascade. In section 2.3
it will be shown that there is, in fact, no contradiction between the two approaches. Some further
comments on theoretical issues are given in section 2.4 and in section 2.5 some comparisons with data
are presented. The problem of obtaining a scheme that provides the same result whether a two-jet event
is generated from one end or the other, i.e. to find a symmetrical stochastical process is considered in
section 2.6. Finally the production of heavy particles is discussed in section 2.7.

2.1. Iterative methods for jet fragmentation

Because of colour confinement we never have a single quark jet appearing in isolation. However, in
the limit when the energy of a qofo jet system becomes very large, it may still make sense to consider
the fragmentation of the quark side of the system without bothering about the g,. This is then the kind
of “infinite energy” single jets we will consider in this subsection.

In the field behind the original, outgoing quark q, a new quark pair q,q, is produced, so that the qo
may join with g, to form a hadron q.q;, leaving the q, unpaired. The production of another pair q»g.
will give a hadron q,q, etc. To denote this flavour ordering of the hadrons, the concept of rank is
introduced [7], qoq; is the first rank hadron, q,q. the second rank one, and so on. (For decay products
the concept of rank is somewhat less useful, but customarily the decay products inherit the rank of the
decaying particle.)

The particle qoq, will take a fraction z, of the energy-momentum available. For a jet with very large
energy, whether z, is interpreted as the fraction of energy or of (longitudinal) momentum will not
matter, but for finite jet energies the proper combination is z; = 21 = Pradron/Protar fOr a jet going out
along the +x-axis, as discussed above. Energy-momentum conservation implies that the remnant-jet
carries the remaining fraction 1- z,, so that the particle q,4, may take a fraction z, = (1 - z,)- z3, with
0= z;=1, the particle q,4; a fraction z; = (1 -z, — 25)* z3= (1 - z{)(1 — z3)z}, etc.

We now assume scaling and an iterative principle, i.e. if the first rank particle g, is taken away, the
remnant-jet looks just like a scaled-down version of the original jet, with the obvious exception that the
leading flavour is q; and not go. From these assumptions one may find the resulting particle spectra in a
jet, either by writing and solving integral equations or by using Monte Carlo methods. We will start by
considering the former approach first.

2.1.1. Integral equations

Consider the quark fragmentation functions Dj(z), where D%(z) dz expresses the probability to find
a hadron h in a quark-jet q, carrying a fraction between z and z + dz of W, or the total (E + p) of the
jet. For only one quark and hadron species we may thus write [7, 8]

1

D)= f(z)+ f f dz'dz" 8(z - 2'2") f(1 - 2') D(z") = f(z) + de,' (- 2) D(—zz—,) . 22)

z

The scaling function f(z) here represents the probability to find a hadron containing the original quark
Qo at z (i.e. properly the probability is f(z)dz per dz-interval), with the normalization condition
Jo f(z)dz =1. In the second term f(1 - z’) gives the probability that the remnant-jet has energy z’W
and D(z" = z/z') gives the probability that this remnant-jet produces a particle with energy 2" z'W =
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zW. For the simple case
f@)=(1+c)1-2z2) (2.3)

the solution to (2.2) is {7, 8]

D(z)==(1+c)(1-z). 24)

ISEE

This gives 1+ ¢ particles per rapidity unit in the central plateau (since dz/z = dy and the central plateau
corresponds to z - 0).

When the production of different flavours is taken into account, a set of coupled integral equations is
obtained

Dy2)= fie)+ [ S -2 Dy (%), )

If the further possibility of having different hadrons with the same quark content is included, f3¥ must be
considered as a sum over all such different (qq’) hadrons. In any case, the f’s are normalized according to

> f () dz = 1. 2.6)

2.1.2. Monte Carlo methods

Whereas not only the fragmentation functions, D%(z), but also two-particle correlations etc. can be
found by the integral equation techniques, the work involved rapidly becomes prohibitive, the more so
when decay chains have to be taken into account. From this point on we will therefore solely rely on
Monte Carlo methods, implemented in the form of computer programs, to find the desired distributions.
This means that random numbers at each step are used to assign variable values according to given
probability distributions, discrete or continuous. Obviously a single jet generated this way is neither
more nor less statistically significant than a single jet in nature.

In a program, different quark-antiquark pairs q;q; are then generated according to given probabilities
and hadrons q;_,q; formed. Each particle may take a fraction zj, chosen according to the scaling
function f(z}), of the then remaining jet energy, so that the fraction of the total jet energy W is

i—1

zi=(1—§zk)z;=ﬂ(1—zg)z; 2.7)

(with z, = z}).
The most widely known Monte Carlo approach is that presented by Field and Feynman [7]. Here a
scaling function

fz)=1-a+3a(1-2z') (2.8)
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is used, with @ = 0.77 determined from experiment. New q;q;-pairs are assumed to be produced in the
proportions uii:dd:ss =2:2:1 and the hadrons thus formed are assumed to be pseudoscalars or vectors
with equal probability. Finally, transverse momentum components for the q; are introduced according
to Gaussian distributions with (p?) = o* = (0.35 GeV/c)* and with local p, compensation within each
q:§; pair. A primary hadron obtains p, from the two constituent quarks and thus will have (p?) = 20°.

2.2. The linear force field

The kind of “cookbook recipes” we have presented in section 2.1 has phenomenologically proven
very successful, but they do not provide any dynamical picture of the actual fragmentation process. Our
task in this subsection is to present such a picture and show that scaling properties appear naturally in it.
To do this, we will assume that not only is the colour field between an outgoing original q and g
compressed into a flux tube, but also that the tubelike field contains a constant amount of field energy
stored per unit length, i.e. that the potential between q and q is linearly rising. Support for this picture is
provided by Regge phenomenology, “onium” spectroscopy (charmonium, bottomonium), bag model
calculations and lattice QCD results. Phenomenologically the string constant «, i.e. the amount of
energy per unit length of the tube, is known to be k =1 GeV/im =~ 0.2 GeV>. (Coulombic corrections
(~1/r) to the potential could correspond to some tapering of the flux tube near the ends, while the cross
section is constant otherwise. However, for the typical hadronic distance scales we will be working with,
these corrections can be expected to be small.)

2.2.1. The Schwinger model
A simple model for a linear force field is provided by 1+ 1-dimensional massless QED, the
Schwinger model [9] defined by the Lagrangian density

L= yy* (10, - gAW — 4F*F,,. 2.9

The theory is exactly solvable and the charge of the fermions is a confined quantity in the sense that
there exists no asymptotic fermion states. It is convenient to express the fermion current j* in terms of a
scalar dipole density field ¢:

Py (2.10)

The spectrum of the field ¢ contains a single stable neutral boson with mass m = g/V/7r where g is the
ccupling constant. It can be shown that the Lagrangian obtained from eq. (2.9) is essentially equivalent
to the Lagrangian for a free bosonic field which can be identified with the dipole density ¢.

An interesting situation discussed in some detail in [10] is the response state which corresponds to a
given external current j&, describing two oppositely charged fermions moving with the velocity of light
in opposite directions. In this case the final state is a coherent state of the dipole density ¢,
corresponding to a polarization charge which neutralizes the total electric charge and consequently
prevents the fermions from appearing as asymptotic free states. The corresponding external dipole
density @y, is

Gexe=—0(t+2)0(: - 2) (2.11)
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and the mean particle density in the coherent state is given by

dn_dn_ 1
E(l’)@‘ dy - (2,”)2

2 2
j &x exp(ipx) g Pexe| = r_ngz_w =1, 2.12)

Thus in the mean one boson is produced per unit rapidity interval. This means that the mean field
energy per unit length appears in rapidity space as one boson with mass m = g/\/ﬂ per unit rapidity.

From the properties of the coherent state one can also show that the statistical distribution of final
state bosons per rapidity interval follows a Poissonian law with density 1. In other words, the probability
P(n,Ay) to find n bosons in the rapidity interval Ay is given by

P(n, Ay)= (—AnX!Z exp— (Ay). 2.13)

Whereas the Schwinger model may serve as a useful guide line, it is not directly applicable to colour jet
fragmentation. The dressing of the original fermions, which are described by j,, is e.g. not covered by
this approach. Also, since there is only one particle species in the Schwinger model, the concept of an
ordering (e.g. in rank) of the final particles does not exist.

2.2.2. Bound qq states

Let us next study the classical motion of two massless particles, e.g. a quark and an antiquark,
interacting via a constant force in 1+ 1-dimensional space-time [11, 12, 22]. The Hamiltonian H is given
by

H=T+V=|p|+|p+ «|x,— x| (2.14)

where p,, p, are the momenta of the particles and x;, x, their positions. The particles always move with the
speed of light and the equation of motion is

dp/dt = £« (2.15)
where the sign depends on whether the other interacting particle is to the right or to the left. We note

that the constant force is Lorentz invariant: if in the original frame x = ¢ and E = =p (+ and — signs
for particles moving to the right and left, respectively), then a Lorentz boost 8 gives

t'=y(t-Bx)=y(1FB)}, p'=vy(p-BE)=y(1+FB)p (2.16)
and thus
dp'/d¢’ = dp/dt. 2.17)

Actually the system is equivalent to the “yo-yo mode” of the massless relativistic string as described in
[12,22]. In the CM frame a quark and an antiquark will oscillate back and forth as shown in fig. 2.1. For
a qg system with mass M the maximum relative distance is L = M/x and the time for a full period of
motion T = 2L = 2MJ«. The hatched area spanned by the motion of the quarks is thus proportional to
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Fig. 2.1. The motion of q and g in the CM frame. The hatched areas Fig. 2.2. The motion of q and § in a Lorentz frame boosted relative to
show where the field is nonvanishing. the CM frame.

M?. In fig. 2.2 the same motion is shown after a Lorentz boost 8. The maximum relative distance has
been contracted to L' = Ly(1— 8)= L e and the time period dilated to T'= Ty = T cosh(y) where y
is the rapidity difference between the two frames.

In this model the “field” corresponding to the potential energy carries no momentum, which is a
consequence of the fact that in 1+ 1 dimensions there is no Poynting vector. Thus all the momentum is
carried by the endpoint quarks. This is possible since the turning points, where q and g have zero
momentum, are simultaneous only in the CM frame. In fact, for a fast-moving qg system the qg-pair
will most of the time move forward with a small, constant relative distance (see fig. 2.2).

In the following we will use this kind of yo-yo modes as representations both of our original qq jet
system and of the final state hadrons formed when the system breaks up. It is for the subsequent work
necessary to know the level spectrum of the yo-yo modes. A precise calculation would need a
knowledge of the quantization of the massless relativistic string but for our purposes it is sufficient to
use semi-classical considerations well-known from the investigations of Schrdédinger operator spectra.
We consider the Hamiltonian of eq. (2.14) in the CM frame with ¢ = x; — x,

H =|p|+«|q] (2.18)

and we note that our problem is to find the dependence on n of the nth energy level E,. If the
spatial size of the state is given by 8, then the momentum size of such a state with n — 1 nodes is

|p| = n/8, (2.19)
and the energy eigenvalue E, corresponds according to variational principles to a minimum of

H(8,)= n/8, + 6, (2.20)
ie.

E,=2Vkn. (2.21)
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Consequently the CM energy, i.e. the mass, grows like V'n and we conclude that for large excitation
masses,

dM?/dn = constant, independent of n. 2.22)

2.2.3. Particle production

We now turn to a situation where qg pairs are produced at different space-time points (x, ) in which
the field is nonvanishing [11]. Energy and momentum will be conserved if the q and g, still assumed
massless, are produced at the same space-time point with zero momentum and afterwards move with
increasing momenta in opposite directions with a vanishing force field in between. In a fully quantized
theory it should of course also be possible to produce a q and q with nonvanishing momenta. However,
in 2-dimensional models the density of states is proportional to dp/p and states with low momenta
should dominate.

A system may thus originally contain a q, and §, moving in opposite directions with large energies.
After some time the system will break into two parts by the production of a pair q;§, at the space-time
point (xy, t;) (see fig. 2.3). At a later time another pair q,3, will be produced at (x5, £,), so that a hadron
can be formed by the pair §;q,. More qq pairs will be produced, giving q;q; subsystems which either are
hadrons or else will fragment further, until only hadrons remain. The energy of the §,q, hadron is
k(x2— x,) and the momentum « (¢, — #). Thus, in order to obtain the correct hadron mass m, the point
(x2, t,) must lie on a hyperbola H, given by

(2= 1)’ = (2= )’ = m?/k? (2.23)

which can be parametrized according to
(X x, b—t)= % (cosh y, sinh y). 2.24)

Here m/x is the maximum distance between @, and g in the rest frame of the g,q, system and y can be

Fig. 2.3. The particles qo and §o move with large energies in opposite directions. In the field qq pairs are produced at the space-time points (xy, #1),
(x2, 12), (x3, 13), etc. Nearby vertices are related by mass constraints (see text). Hadrons are formed by §:1qz, 32q3, ete.
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identified with the rapidity of the hadron in the original frame. The point A,, where the hyperbola H,
crosses the world line of qo, corresponds to the minimal value of y. For the next hadron §.qs the
minimal rapidity corresponds to the point A,. This rapidity will be larger than the minimum rapidity of
4192, provided the two hadrons have the same mass, because the length L, of the field between qo and
G, is shorter than the corresponding length L, between qo and g,. Hence the hadrons will, on the
average, be ordered in rapidity. The field lengths decrease in a geometric fashion and thus the rapidities
increase linearly. The final picture will be like the one in fig. 2.4.

X

Fig. 2.4. The final picture when qp and o move with large energies in opposite directions. The field has broken at many places by the production of
qq pairs. Hatched areas indicate nonvanishing field.

It should be emphasized that Lorentz invariant statements can only be made about the production
points of qq pairs and points where q and q world lines cross. Therefore statements about “hadron
production points” have no meaning in this model. It is, however, possible to define the first crossing of
the q and q of a hadron as such a production point. If so, it is evident that, for any Lorentz frame, the
particles with low momenta are always produced first in time. The hadrons will emerge around a
hyperbola corresponding to a definite proper time, as will be discussed further below. With the usual
terminology, this is thus an inside-out cascade in time.

A trivial observation is that all pair production points are causually disconnected. The fact that
hadrons nonetheless manage to end up on mass shell cannot be explained in purely classical terms.
Quantum mechanically it can be argued that all breakup configurations that give unphysical masses
simply cannot be projected onto a physical state.

The time-development properties of our model are further illuminated by the situation shown in fig.
2.5. At the time 1, the total system can be interpreted as consisting of two jets along the lightcones and
an excited state in the center. At a later time the excited state breaks up into two hadrons by the
production of another qd-pair. However, this interpretation depends strongly on the choice of the
Lorentz frame. In another Lorentz frame, with coordinate axes x’ and ¢’ as indicated in fig. 2.5, the two
hadrons seem to be produced one after the other. In fig. 2.5 it is also seen that the hadrons might cross
each other. Thus the ordering in rapidity indicated in fig. 2.4 is only true on the average.

From fig. 2.3 it might seem that the fragmentation involves two fundamental subprocesses: in the
point (x,, #;) the original system breaks into two jets, while in (x,, ) a jet breaks into a hadron and a
remainder-jet. However, there cannot be any real difference between these two vertices: it is always
possible to make a Lorentz boost to a frame where ¢, occurs before #;, and in that frame the roles of
(x1, 1) and (x5, ,) have been interchanged. We therefore only have to study one type of vertex. With a
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Fig. 2.5. In a Lorentz frame with coordinates x and t an excited state had been formed by time £, which later decays into two ground state hadrons.
However, in a frame with coordinates-x’ and #’ the hadrons are formed one after the other. It is possible that the hadrons cross. Thus the ordering in
rapidity seen in fig. 2.4 is not necessary.

very large boost we come to a frame where the last meson is produced first in time. Thus here also the
first break is of the type jet— meson + remainder-jet. This will be further discussed in section 2.3.

We also note that there is no observable difference between the final states obtained by the processes
in figs. 2.6a and 2.6b. There is nevertheless only an interpretation in terms of an iterative model in
space-time for the case in fig. 2.6b. In section 2.4 we exhibit an interpretation of our model in
energy-momentum space and then only fig. 2.6b is relevant. We therefore subsequently neglect the
situation relevant to fig. 2.6a.

Fig. 2.6. The process (a) is neglected compared to process (b).
2.3. Iterative methods revisited

In every Lorentz frame the slowest hadrons will be produced first, as mentioned above. Thus, if we
make a sufficiently large boost, the outermost hadron (containing the original qo) will be produced first.
This situation is shown in fig. 2.7, where the boost for simplicity has been chosen such that the
maximum possible rapidity for the hadron in this frame is y = 0, corresponding to the hadron taking all
the qo momentum.
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In this frame qo starts off with low momentum, 3m;, whereas the momentum of §, is very large
negative. At a point A = (34, 3A) with A = m,/k, qo turns over and follows a worldline parallel to that of
Jo- At some point B on the hyperbola H; a pair q,q; is created and subsequently a hadron gog; can be
formed. Again, in order to obtain the correct mass m, = mg,, we may parametrize H; according to

(x1, 1) = A — cosh y,,3—sinh y;) (2.25)
where y, <0 is the rapidity of qo; in this frame.

We note that the distance between qo and §o (after the qo has turned over) is Lo = A whereas the
distance between q, and §o is L, = A(1 —€”). If the p* = E + p initially carried by q, is called W*, and
the initial p~ = E — p of the G, called W™, then the invariant mass M, of the original system qoqpo is
M75= W*W~. Call the invariant mass of q,Jo M;. Then

M5=WkL,, = WkL, (2.26)
and thus for the W* fraction taken by the particle
z1=(Lo— L\)/Lo=1- M}/M3. 2.27)

In general we would expect the probability for breakup in a given point to be given by Fermi’s Golden
rule

dP = M| dn (2.28)

where # is a quantum mechanical transition matrix element and dn is the density of states available.
For the moment, let us assume [8, 11] that ./ is a constant and that dn ~ dM?, as shown in section 2.2.2.

Fig. 2.7. The situation in a Lorentz frame which moves very fast Fig. 2.8. For fixed energy of the first hadron (i.e. z; fixed) this figure
relative to the CM frame. In this frame the original momentum of qo shows the situation in a Lorentz frame in which the second hadron is
is m1/2 and a hadron produced with z = 1 is at rest. at rest if it takes all remaining E + p;, i.e. z2= zo/(1 - z1)= L.
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Then, according to (2.27)

P dm?
— = const

— const L =
dz. iz, - const —==1. (2.29)

M3

In terms of y; = In z,, this is dP/dy, = e”.

Let us now turn to the formation of the next hadron q;q,. The new pair q.q, has to be created at a
point along the hyperbola H.. It is possible to choose a Lorentz frame where the distance between q,
and Qo is A = my/k, with m, = mg4, see fig. 2.8. The necessary boost obviously depends on z,, as well as
on the masses. In the new frame the situation for q,q. is the same as for qod;, discussed above. Thus we
obtain dP/dy,=e” with y,<0 the rapidity of q,g, in this frame. Defining z;= z,/(1- z,) we find
z;=e”and dP/dz;= 1.

We conclude that, when the hadron qoQ, is taken away, the rest looks just like the original system
when expressed in the new scaling variable z’ = z/(1 - z,), i.e. the total jet energy is lowered by the
factor 1 - z;. This feature immediately implies the integral equation (2.2) with

f(z)=dP/dz=1. (2.30)

When the production of different flavours is allowed for, the assumption of local conservation of
quantum numbers means that each pair q;q; should be flavourless. Since the shape of f(z) does not
depend on the particle produced, eq. (2.5) will in this case read

pie)= i+ [ F S v Dy(3) @3y

where f2 now are simple numbers related by

g fa=2 =1 2.32)

giving the probabilities of producing different hadrons.

We thus see how Lorentz invariance implies that a cascade, which in space-time is of the inside-out
nature, very well may be described by integral equations of an outside-in nature. This conclusion is not
dependent on the choice of f(z) in eq. (2.30): based on other considerations in connection with eq.
(2.28) one may arrive at different f(z), e.g. the one used by Field-Feynman, but an iterative outside-in
cascade may still be obtained. The particular model described above by eqgs. (2.30)-(2.32) will
subsequently be referred to as “simple Lund”. By suitable (and physically motivated) choices of the
numbers f2¢ it provides a surprisingly accurate description of jet fragmentation.

A model of this kind contains a strict ordering of the hadrons in flavour, expressed e.g. by the
concept of rank [7]. In our case qog, would be the first rank particle, q,§, the second rank one and q;_,4;
the ith rank one. Two adjacent-ranked hadrons thus always share one qq pair. However, this ordering
need not coincide with the ordering in rapidity space. If two adjacent-ranked hadrons have the same
mass, the rapidity difference distribution becomes [11]
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dAy f I dz, dz; 8<Ay - ln(z1 J’ J dz,dz5 S(Ay ln(;(l——zl—)))
= exp—(Ay) (In(1 + exp(dy) - m—)@l(—_ﬁ) . (2.33)

The average value of Ay is 1, but the probability distribution is not vanishing for Ay <0, i.e. there is a
finite probability that hadron i has smaller rapidity than hadron i + 1.

Finally we note the similarity between the results of the simple Lund model and the results of
exciting the Schwinger model by an external current as in section 2.2.1 [10]. There is in both cases in the
mean one particle produced per unit rapidity and the fluctuations in a central rapidity bin is of a
Poissonian nature. Actually, in the simple Lund model this result is true for all rapidity bins, not only
the central ones.

The basic considerations behind the simple Lund model are, however, not fully satisfactory as we will
demonstrate in section 2.6, because the stochastic process defined by the model is not a symmetrical
one.

2.4. Momentum space interpretation and details of the underlying stochastic process

The model developed above can be interpreted in momentum space and in terms of a stochastic
process as follows [11].

2.4.1. Momentum space interpretation

First we note that for a jet system with qo going out in the forward direction and gy in the backward
one, all new q;q;-pairs will be pulled apart so that g; moves forwards and q; backwards (see e.g. fig. 2.9).
For hadron i with constituents (q;-1q;) the energy and momentum are given by

pi=E =«k(xi.,— x)=p}, pi=p=k(tia—t)=p? (2.34)
where (x;, t;) are the space-time coordinates for the pair (q;G;).
Thus the energy-momentum p* of particle i is given by the “step” from the space-time point x*; to
x4

pY = k(xty—x¥)=x Axt . (2.35)

Fig. 2.9. Simple momentum space representation of the breakup of a qodp jet system.
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The breakup of the system can be represented by a chain of steps, where each step satisfies the
condition

Pipw = —k>Axt Axy, = m?. (2.36)
For meson i the lightcone coordinates p; = E; + p; and p; = E; — p; are also given by the distance

passed by §; and q;_, respectively, before they meet. Thus the g; can be considered as carrier of the
E + p components of the jet while the q; carry the E — p components.

2.4.2. Some details of the stochastic process
In a model of this kind the steps between adjacent production points are actually of a stochastic

character, i.e. each step starts from the previous production point and is taken according to a
probabilistic rule. The step in the (+)-direction from point i —1 to point i is given by the variable z;
which in the simple Lund model is evenly distributed between 0 and 1

AxT=zixt,. 237N
The step in the (—)-direction is then fixed by the meson mass (eq. (2.36))

Ax7 = m?¥k*Ax} . (2.38)

Thus we have the recursion formulae

xi=01-z)x",

2.39
o miozl @)
i i—-1 K2 Z:' x-ii—
together with the boundary conditions
xaz W+/K, x6=0- (240)

There is only one constraint on all the z;, that the path must end at the turning point of §o: x* =0,
x~ = W~ /k. For large energies there will be a large number of steps and the restrictions on each z; will

not be important.

2.4.3. Distribution of breakup points in invariant time
We define a quantity I'; proportional to the invariant time-squared at each vertex point [11]

Ii=«?xtx;. (2.41)
Thus I is a measure of the time it takes until the string breaks. Via the relation

I'= M2+ (M2 + T)W?= M2M2/W? 2.42)
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(for T <M?2,) I' is also connected to the masses M, and M, of the two jets created by this break.
Equation (2.39) now yields

[i=Q1-z) -+ milzl). (2.43)
If all m; are equal and all z} equal to their mean value 3, we obtain
I= Q- @ m?. (2:44)

For increasing i, I'; will rapidly approach an asymptotic value. Thus in the central plateau, away from
the ends of the jet system, production points will lie around the hyperbola

X*x = - x?=Ilk*=2m?K? . (2.45)

The probability distribution of I}, called H(I;) can be determined from the assumption that for
sufficiently large values of i we have H(I;) = H(I';-1). This gives

H()= f f dz' dI” f(z') 8(T' - (1 2')(I" + m?/z')) H(I") (2.46)

which can be solved analytically [11]. The distribution behaves as

H()—>const forI'>0
>In(l)/r*forr'r->w, .47

2.4.4. Digression on the joining of jets

For a finite jet system, we must satisfy the constraint that the chain of production points ends at
x*=0, x"= W /k (see section 2.4.2) if we wish to have conservation of energy and momentum. A
practical solution adopted in the Lund model is as follows [13]: instead of generating particles from the
Qo end of the system all the way over to the G, end, each new step is with equal probability taken either
from the g or the o end. In the former case the scaling variable z;= z}" is used to find p; and then p;
is found from p{ - p; = m?, whereas in the latter case z;= z|” gives p; from which p; is deduced. We
keep track of the W*= E +p which remains after each step. When the remaining mass-square is
below a given value (approximately 5 GeV?), a final qg-pair is generated which is used to produce the
final two hadrons. The two possible kinematical solutions (if no solution, we start all over again) are
weighted with a probability that gives the right average difference in rapidity. In this way at each step
we conserve energy, momentum and flavour, and at the same time we obtain a smooth joining
prescription in the center, e.g. giving a flat central rapidity distribution at large energies and almost the
same mean rapidity difference between any two adjacent-ranked primary hadrons anywhere in the
chain.

2.5. Some comparisons with data

A realistic model for jet fragmentation will require a number of further ingredients. So far we have
only considered the evolution of the colour flux tube in one space dimension. The very fact of having a
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finite transverse cross section of the tube gives a transverse momentum spread due to the uncertainty
principle. How this comes about through the tunneling mechanism will be discussed further in section 3.
We will here make use of the main results, namely a Gaussian p, spectrum for quarks, with the q and g
of the pair having opposite and equally large transverse momenta, and a suppression of ss-pair
production,

Further, we will assume that only particles with orbital angular momentum L = 0 are produced. The
neglect of particles with higher L quantum numbers in fact seems quite reasonable: a classical
order-of-magnitude estimate for a hadron of size d = 1 fm = 0.2 GeV~! with the quarks in the endpoints
obtaining {p,) =~ 0.5 GeV would give an orbital angular momentum L~ d - {p,)=0.2 GeV~'-0.5 GeV ~
0.1. Quantum mechanically one could thus expect maybe a 10% admixture of higher states, and these
would easily be masked by subsequent decays since these resonances are broad to start with. According
to naive counting of spin states we would expect the L =0 pseudoscalar and vector multiplets to be
populated in the proportions 1:3.

2.5.1. Simple Lund versus standard Lund

The model for the longitudinal fragmentation presented in sections 2.2-2.4 (based on [8, 11])
coupled with the 1:3 pseudoscalar : vector ratio is then the earliest version of the Lund model, in which
effects of the transverse dimensions are neglected except for the Gaussian p, distribution, and this is the
reason why we will refer to it as “simple Lund”. From a practical point of view there are very large
similarities with the parametrization presented by Field and Feynman, even if the latter was never
explicitly based on any picture of the space-time evolution as in the Lund case. Essentially only two
things are different: instead of having a flat scaling function f(z)= 1, Field-Feynman [7] use f(z)=
0.23+2.31(1 - z)?, which tends to produce more particles at lower energies, but at the same time an
equal production of pseudoscalars and vectors is assumed, which tends in the opposite direction. The
resulting particle spectra after decays of unstable particles will be rather similar, as is illustrated in fig.
2.10.

In the following subsections we will discuss corrections to the simple Lund model. The spin—spin
forces will be shown to enhance the production of the lighter pseudoscalars, from the naive 1:3
pseudoscalar to vector ratio to something closer to 1:1. We will also discuss how collinear gluon
emission may be expected to modify the scaling functions f(z)=1 to f(z)=(1+c)(1-z);, with
¢=0.3-0.5, and how the tunneling mechanism due to finite field lengths will give rise to a further
weighting with I'/(I'+ m3,) at each quark pair production vertex, which will further suppress the
production of particles at large z. Here I' is the quantity defined in (2.41) and m ,, is the transverse mass
of the quark produced. Also taking into account baryon production and, if need be, hard gluon
emission, we move from the “simple Lund” to the “standard Lund” model. The shapes of the scaling
functions are shown in fig. 2.11, where the standard Lund curve gives the average shape, since the
T'/(I' + m3,) factor means that this scaling function is more complicated. In fig. 2.10 some resulting
particle spectra are also shown. In particular, note that the p° spectrum indicates that a P:V ratio of 1:3
is excessive (cf. [14, 15)).

2.5.2. Some dangers in comparisons with data

A comment about the experimental data points may here be in order. Unfortunately comparisons
between model predictions and the experimental data are difficult. At low energies, say W <10 GeV,
all kinds of finite energy corrections make themselves felt: resonance production, few-particle
(exclusive) states, mass corrections etc. Then it is often a bad approximation to apply iterative schemes
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Fig. 2.10. Fragmentation functions for (a) #*, () #~ and (c) p° in single u quark jets for simple Lund, dashed curve, standard Lund, full line, and
Field-Feynman, dash-dotted. Data are from DECO [14], with 3< W <4, and dotted line standard Lund for jet systems with W = 4.

for single jet fragmentation, when actually we have a finite two-jet system, as is shown in fig. 2.10. At
higher energies gluon emission starts to become important, to be discussed in section 4. In addition,
many experiments do not fully unfold the effects of radiative corrections etc., but rather include those
effects in their simulation Monte Carlo programs. We will therefore leave high-precision comparisons to
experimentalists (many groups are using our Monte Carlo programs to study e"e” annihilation,
leptoproduction, hadroproduction, etc.) and mostly use data to illustrate principles.

One comparison of D*(z) for incoming » and # is presented in fig. 2.12. In particular, note the shift
from the dashed to the full line in D7 (z) which represents the effects of detector acceptance etc. The
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effects etc. have been folded in.
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amazing thing about figs. 2.10 and 2.12 is not the minor disagreements, but the fact that a jet
fragmentation picture works at all for W in the order of 4 GeV.

The development of a rapidity plateau for a simple uii jet system is illustrated in fig. 2.13. In fact, the
scaling violations are quite significant already for simple qq jet systems, fig. 2.14. A minor part of these
violations comes from passing the bb threshold, but most of the effect is associated with the strong

T T T T T T T T 1 T
_2 Y

-6 -4 (o} 2 4 6
Fig. 2.13. Formation of a rapidity plateau: charged particle rapidity distributions with respect to the true jet axis, in ui jet systems at CM energies of
5, 10, 20, 40 and 80 GeV.
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Fig. 2.14. The “scaling” cross section s do/dx, at 5 GeV, dashed line, compared to DASP data [17), open circles, and at around 30 GeV, full line,
compared to TASSO data [18), filled circles. Hard gluon emission is not included.
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Fig. 2.15. The #*, K* and p, p fractions of the charged particles compared to TASSO data [19]: open squares =, filled circles K*, open circles p, p.

nonasymptotic corrections below 20 GeV (mass effects etc.). Also for many other measures kinematical
effects may well play an important role. This is illustrated with the charged particle composition in fig.
2.15 (calculated fractions are for qG jet systems alone, inclusion of gluon jets will not significantly
change the picture), where the behaviour with momentum comes out qualitatively correct just because
of the higher K and p masses and the effects of the profuse particle decays.

2.6. Left-right symmetry

We have (e.g. in section 2.4.2) discussed iteration schemes for the fragmentation of a qoo jet system,
starting at the qo end of the system and stepping “left” towards the g, end. Alternatively we could have
begun in the go end and iterated the other way instead. Whatever way we choose to do it, we would
wish to obtain the same result on the mean. The use of iteration schemes at all is just a matter of
convenience; as we have noted before: all qG-pair production vertices are causally disconnected from
each other. Since our iteration schemes have been derived under the assumption that there is much
energy left, an iteration from the qo end cannot be taken all the way to g, and vice versa. In the central
rapidity plateau of a reasonably large jet system, however, there should be no artefact left to tell the
direction of iteration. Unfortunately, for the schemes we have discussed so far, such artefacts exist and
are sometimes quite prominent.

The basic reason for an asymmetry is not difficult to understand. In any iterative cascade scheme it is
possible to compute a correspondence to the distribution H(I') for the proper times of the production
vertices. The center of the distribution will be along a hyperbola corresponding to a proper time
7o~ m/k, where m is some median mass in the final state hadronic systems.

If a large mass hadron is produced with a small value z of energy-momentum, the production vertex
will in accordance with fig. 2.16 correspond to a proper time far away from this center hyperbola.
Unless this is followed by a step with a very large z-value it will take many steps before the proper
times of the vertices are back to the hyperbola. Thus the fragmentation process will be asymmetric
unless the heavier particles normally take a larger fraction of energy-momentum.
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Fig. 2.16. If a large mass hadron is produced with a small value of z, the production vertex will be far away from the hyperbola corresponding to
average proper times, It might then take many steps before this hyperbola is reached again.

2.6.1. Measures for left-right asymmetry

The left-right asymmetry of a given iterative cascade model can be studied in different ways. As we
have noted above, an asymmetry is usually associated with the existence of particles with different
masses. Let us therefore consider the rapidity difference Ay, = y, — y, of any two hadrons with adjacent
rank, where e.g. particle no. 1 is defined as the one generated first of the two if the event is considered
to have been generated from the right end of the system. The expected distribution in Ay;,, and
in particular the mean value (Ay:,), depends on the transverse masses m,; and m,,, i.e. (Ay;) =
(Ayi2) (m 1, m,2). For a truly symmetric stochastical process the quantity must be independent of the
labelling of the particles, i.e.

(Ay12) (moy, myo)=(Ayi) (M2, Myy) (2.48)

since the labelling of particle no. 1 and particle no. 2 would be reversed if the event were instead
considered to have been generated from the left end. Actually (2.48) is strongly violated in the Lund
and Field-Feynman models, as is shown in fig. 2.17 by plotting (Ay.,) (m,— m5).

It would be tempting to assume that left-right asymmetries are only associated with different masses,
so that if all particles had the same mass, there would be no such asymmetries. This is not true, as we
will show using a modification of an argument originally presented by Field and Feynman [7]. This time,
consider any three particles adjacent in rank, nos. 1, 2 and 3, where no. 2 is the one with middle rank. For
given y, and y; left-right symmetry implies that y, should be symmetrically distributed around
3(y1 + ys), i.e. in particular

(y2=3(y1+ y3)) (1= y3)=0. (2.49)

Note that 2y, — (yi + y3) = (y2— y1) — (¥~ ¥2), i.e. (2.49) does not depend on absolute rapidities but only
on rapidity differences, just like (2.48). As indicated in fig. 2.18 the relation in (2.49) is violated both in
the Lund and in the Field-Feynman cases, if all particles are generated e.g. from the right, even when
all masses have been put equal and no transverse momenta are introduced.

We note that these two measures can be used as tests on any model, but that they cannot be directly
applied to experimental data, since ranks are not known and since particle decays complicate matters.
In principle one could imagine studying e.g. K"K -pairs or K*¢K -triplets in events with no other
strange particles, and defining the right side of the jet system by the overall direction of motion of the
pair or triplet, but this would be a tedious task and would have to depend on comparative Monte Carlo
studies for an interpretation.
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Fig. 2.17. Left-right asymmetry in jet fragmentation: (y; — y2) (m.1—
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Fig. 2.18. Left-right asymmetry

in jet fragmentation: (y;—

my,), 1, 2 adjacent in rank, for standard Lund, full line, Field-
Feynman, dashed and symmetric Lund, dash-dotted.

%(y1+ y3)) (11— y3), 1, 2, 3 adjacent in rank, for standard Lund, full
line, Field-Feynman, dashed, and symmetric Lund, dash-dotted.

2.6.2. A symmetric fragmentation scheme

At this point the question arises: is it then possible to have a scaling function which really gives
left-right symmetric jets? The answer is yes, it is possible, but only for a very restricted set of
fragmentation functions.

Let the scaling function f,z(z, m?%) describe the probability for a quark with flavour @ to combine
with an antiquark with flavour B to give a meson with transverse mass m, and energy-momentum
fraction z. Then, if we require a symmetric fragmentation, f,z must have the functional form [20]

fus(2)= N %y«(%)"’ exp—(bm?/z). (2.50)

The indices @ and B correspond to, the flavours produced at the vertex where we start and end
respectively and there is one in principle free parameter a, and ag for each flavour. The parameter b is
the same for all vertices and m? is the transverse mass of the hadron produced. The quantity N, is a

normalization constant.
Furthermore the vertices with flavour a are (in the central plateau) distributed in proper time

r=VT/k according to
H,(INdl'=C,dI'T= exp—(bI). (2.51)

Phenomenologically (cf. sections 2.6.3 and 2.7 below) there does not seem to be a necessity to use the
freedom of different values of a for different flavours and we will in general assume that all the
a-parameters are equal.
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Fig. 2.19. Kinematical variables used for demonstrating left-right symmetry.

We will not here give the complete derivation that (2.50) is the unique solution, but only indicate that
f will indeed lead to a symmetric fragmentation. To see that we consider fig. 2.19 where, seen from the
right, we start in a point where a qq pair with flavour « is produced with momentum space coordinates
pt=W*, p~=T*/W"* and take a step z* to produce the hadron with transverse mass m,, flavour «
and antiflavour 8. Seen from the left, a step z~ is taken from a point with p* = I'"/W~, p~ = W~ for the
same production process. All of these variables are of course not mutually independent, e.g. m3 =
z*W*z~W-. The requirement of left-right symmetry means that in the center of phase space the
probability to generate this configuration of variables must be the same whether the fragmentation is
done from the right or from the left. Thus we demand

H (I')dl* fop(z*) dz* = Hy() Al fou(z7) dz~ . 2.52)

Using the relations

WW-=TI*+m?z* =T +m2/z" (2.53a)
Q-2 )W Q-zYW=(1-2M*=1-2)" (2.53b)
m3 (z*Y(z" P dz* dz- = Z% dz* dr* = Zi_ dz-dr- 2.53¢)

it is easy to show that eq. (2.52) is indeed satisfied by the expressions in eqgs. (2.50) and (2.51).

We end this subsection with a few remarks on finite mass systems in this model. If we produce a set
of n particles adjacent in rank with “flavour powers” ay,...,a, it is easily seen, according to the
iteration procedure in section 2.1, that in terms of observable lightcone fractions zy,..., z, we will
obtain the probability

de
dP(zy, ..., 2, ka 1k(1 ST 12’) —SkTz
— _ S an _ dzk (ak-1-ak)
=(1-> z) exp-(bA.(z1,... z,,))]_[Nk 1k 2K (2.54)

The quantity A, is given by
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An=i—i——i—2z,-. (2.55)

2=, (2.56)
Z —i 2.57)

It is useful to define the internal lightcone fractions

3= 2lz

> =1 (2.58)
k=1
and we obtain immediately for the probability in eq. (2.54)

APGs . gm3 2, 5) = ds,,(izz“"<l—;—z>an exp— (bs,,( ))dPs,,(gl,...,g,,) (2.59)

with

. . d
dPs,‘(gb...,5,,)=exp(—bA,,(51,‘..,5"))6<1_25k)5(sn_2 mk>1—[Nk - Z P
(2.60a)

En) 2 (2.60b)

Consequently, it is possible to factor out the total z-dependence of the probability distribution and to
consider the internal behaviour of an n-particle cluster with a given total mass s,.

We note that the z-dependence is the same as if we had produced the vertex n (with flavour-power
a,) from the original vertex (with flavour power a,) in one step with the total mass s,. The symmetric
process therefore implies that any part of a large jet system can be taken out and considered by itself,
irrespective of the intermediate steps and flavours. One only needs to know the total mass and the
flavours at the beginning and at the end to obtain the distribution.

We also note that if we introduce the quantity

I=s,(1-2)z 2.61)

which corresponds to the proper time-square of the nth vertex given that the starting vertex is on the
lightcone, we obtain the finite mass version of H,, in eq. (2.51)

o AP re
fo,.)=aT(F;sn)°<(T+—s'5mexp—(bf). (2.62)
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It is evident that H ¢ will approach the asymptotic expression in eq. (2.51) as a geometrical progression
and a simple estimate tells that the asymptotic distribution will in general be reached after the first four
or five particle production steps.

It is useful to note that the quantity A, in eq. (2.60b) is actually equal to the size of the area in the
fig. 2.22. We will come back to a discussion of the significance of this in section 2.6.5.

2.6.3. Phenomenology in the symmetric Lund scheme

The parameters a and b in the scaling function f(z) in (2.50) are generally related to the behaviour
for z close to 0 and 1. The behaviour as z - 0 is regulated by the factor (1/z) exp(—bm3/z), which peaks
at z = bm3 (for bm3 <1) and rapidly vanishes for smaller z values, while the behaviour for z—1 is
determined by the factor (1- z)%.

Experimental data are well reproduced assuming a common value of the parameter a for all flavours,
and the results presented below are obtained using this assumption. We comment on the possibility of
different values a; in connection with heavy quark fragmentation in section 2.7.

Experiments then suggest that 0 < a <2, since a <0 would have given too many and a =2 too few
particles at large momenta. Within the region 0 < a <2, b > 0 there is a rather large freedom for a and
b separately, but there is a strong correlation between the two: since the mean step in z decreases and
hence the mean multiplicity increases when a is increased or b decreased, only values along a curve in
the (a, b) plane will fit the observed particle spectra and multiplicities. Thus for inclusive particle spectra
a good agreement can be obtained with a = 1, b = 1/2.25 GeV~2, but a fit with, e.g., a =0, b =5 GeV™2
would also be possible.

For definiteness we will subsequently with “symmetric Lund” refer to a fragmentation scheme a la
the standard Lund, but using f(z) according to (2.50) for the longitudinal fragmentation with a = 1,
b =1/225GeV~? unless otherwise stated. We note that the collinear gluon and finite field length
corrections in the standard Lund model have effects very similar to the (1-2)* term in (2.50), i.e.
essentially that of suppressing z values close to 1. Therefore these corrections are not separately
implemented in the symmetric Lund scheme The shape of the scaling function f(z) is then given for
some different transverse masses in fig. 2.20 (cf. fig. 2.11).

Further restrictions on a and b can be obtained from correlation data. When both a and b are
increased (e.g. in such a way that the mean multiplicity stays constant), what happens is that the
ordering in rapidity becomes more and more like the one in rank. The extreme case is when a and b are
allowed to go towards infinity with the fixed ratio a/b = I'; for some number I'o. Then H(I')-> 6(I" — I,),
i.e. all q@ pair productions occur at the same invariant time, and the ordering in rapidity agrees
completely with that in rank. For more realistic a and b values, the rapidity spread o(Ay.,)=
V(Ay%) — (Ay.,)* between two particles adjacent in rank is shown as a function of m,,+ m,, in fig.
2.21b (the dependence on m_;— m,, is smaller but not insignificant, with smallest o for m,,~m_,).
Higher a and b values thus lead e.g. to stronger local charge, strangeness or baryon number
compensation. Experimentally this is a difficult subject to study (effects from particle decays are quite
substantial, etc.) [21] but eventually such studies could help to fix the a and b values separately.

While the spread a(Ay;,) decreases for heavier particles, the mean value (Ay;,) actually increases, as
is seen in fig. 2.21a. This is related to the fact that for small masses (z) ~ m, so that the remaining jet
energy is not scaled down much with the production of a light particle, whereas a heavy particle will
take a large z and therefore does not leave much energy to the subsequent particles.

Thus e.g. kaon and proton spectra should become relatively harder than pion spectra. Numerical
calculations show, however, that this effect is very small, and the ratios #/K/p are essentially the same
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Fig. 2.20. Shape of left-right symmetric scaling function f(z, m_), specifically (1/2)(1 - z) exp(—b'/z) with b’ = 0.1, 0.4, 1.6 and 6.4, corresponding to
m;~0.5, 1,2 and 4 GeV, respectively.
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Fig. 2.21. (a) Rapidity difference (y, — y») and (b) rapidity spread a(y1 - y2) = V{(y1— y21) — {y1 - y2%; both as functions of m,+ m,; for 1 and 2
of adjacent rank. Full line f(z)= (1/z) (1~ z) exp(~m?/2.25z), dashed f(z) = (1/z) exp(- m}/9z) and dash-dotted standard Lund.
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as in the standard Lund model. The differences in transverse mass simply are not large enough, in
particular since many pions stem from vector meson decays.

In the symmetric Lund scheme, transverse and longitudinal properties do not completely decouple:
since m3 = m?+ p3 and not just m? enters in (2.50) the average z will rise with p,. The effect is small,
however, and experimentally hidden, e.g., by particle decay effects.

2.6.4. The Artru-Mennessier model

The symmetric Lund scheme has similarities with the Artru-Mennessier model [22]. This model was
conceived very early, before the use of iterative fragmentation jets became popular.

The breakup properties of the string in the A-M model is based upon classical probability arguments.
It is assumed that there is a constant probability P, per unit time and length that the string breaks by
the production of a q4-pair. No further breaks can occur in the forward lightcone with respect to a given
vertex point since the field is vanishing there (cf. e.g. fig. 2.4). This approach then leads to an
exponential decay law, i.e.

dP/dT = b exp(~bI) 2.63)

with b = Py/2«>.

With this basic probability argument the different vertex points will appear completely independent
of each other so that the mass of the final state hadrons will not be fixed numbers but instead be given
by a mass distribution. If one considers the breakup closest to the qo end, i.e. the one with the smallest
x~ = t— x coordinate one obtains [22, 23]:

dP =exp—-(bW* 27 W) bW* dz* W™ dz~

= exp—(bm?/z*") 22; dz* dm? (2.64a)
1

dp
am> - jexp—(bm2/z+)z—li dz* = b E,(bm?). (2.64b)

0

This expression is singular for m*—0, corresponding to a large probability for the string to go on
breaking into very small pieces unless some lower cutoff is imposed on the mass spectrum. Such a cutoff
is difficult to introduce in a consistent way if one wants to keep the classical probability interpretation
mentioned above. Nevertheless it is possible to interpret the mass spectrum in a way similar to the
well-known Hagedorn model (which however has a linear dependence upon the masses in the exponent
[24]) as corresponding to resonances etc. which may decay in later steps to the ordinary hadrons. The
Artru-Mennessier model, which is explicitly left-right symmetric, was conceived independently of any
iterative framework, but can actually be given an iterative structure using (2.64).

It would thus be natural to assume that our model presented in section 2.6.2 is just a
specialization of the Artru-Mennessier model to a physical mass spectrum, but this is not true. A
classical probability argument would not in the case of fixed masses lead to an exponential decay law.
To see that we start to assume that inside a finite width dm? around the mass hyperbolae we will allow
for the breakup just as in the A-M model. Then we calculate the z* value for which the first (in time)
breakup occurs if the production probability is a constant per unit length and time within the band of
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allowed breakup points

1

+ + PO + — - + PO + — - +1
fz)dz* =5 S W W™ 62" dz exp——(l!' Lo wew sz dz )
1
2 2 +¢ 2
=P2i’2n zl+ dz” e"p_Pzirzn (I CLZ“):PziT ZH o, (2.65)

+
z

We may now let §m?— 0 if at the same time P,— . Note that for P, §m?/2x* = 1 we recover f(z)= 1,
i.e. the simple Lund result that does not give a symmetric fragmentation process.

2.6.5. A possible interpretation of the symmetric model

There is another interesting and rather suggestive interpretation of the fragmentation distributions in
eqs. (2.50) and (2.60) [20]. The expression in the exponent does, as explained in connection with eq.
(2.60), have the interpretation of the area of a space-time surface. At this point it is useful to consider
the detailed fig. 2.22 in which the string system breaks up at a set of vertices labelled V,, ..., V,._i. The
original pair gofo starts out at the space-time point O and in QCD language they correspond to a colour
singlet. At the point O,, qo (which has turned around at D) and G, (produced at V;) will meet “for the
first time” to form a colour singlet final state hadron. The surface in question is given by OD,O,C,
where C, is the point along the g, lightcone marked out in the figure.

Inside this surface there must evidently be a “memory” of the qogo colour properties as compared to
the qoq, properties, and we will call it a “colour coherence region”. The fragmentation distribution for
the final state hadron composed of q:q, (produced in the vertices V, and V, respectively) is similarly
related to the colour coherence region C,V,0,C; and so on, so that the hadron q,-:qo is related to
C,.-1V,.-10,C, with C, the turning point of go.

We may, however, evidently just as well consider the fragmentation process from the antiquark end
in which case we will have the corresponding fragmentation distributions related to the colour
coherence surfaces OC,0,D, -y, D,-1V,-10,-1D,_; etc. until D,V,0,D,. We may also split up the
surface in any way taking steps either from the right or from the left as shown in fig. 2.23. The area of
the total surface is always equal to A, in eq. (2.60b).

This freedom of considering the process “in any direction” corresponds in a suggestive way to the

c} —

o
01/0\3"-2
n-1 0

Fig. 2.22. “Colour coherence regions” in a gauge where A% =0 and Fig. 2.23. “Colour coherence regions” when gluons can be emitted
all gluons are emitted along the positive lightcone. randomly.
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gauge freedom in 1+ 1-dimensional QCD where we may, e.g., choose the lightcone gauge A2 = 0 (with
a a colour index) corresponding to “emission of gluons” only along the positive lightcone etc. When we
consider the results for producing an n-particle cluster with total mass s, in accordance with eq. (2.60),
we note that the probability is governed by an area law [25], corresponding to exp(-bA) and a product
of factors z#*1~% corresponding to “the distances” travelled along the lightcones of a g-particle (positive
power) and a §-particle which, moving along the opposite lightcone, should and does exhibit a negative
power. The two powers z5° and z,* correspond similarly to the motion of the original pair along D,O,
and C,0, respectively. Evidently the whole setup is very suggestive of the expected expression for
Wilson loop integrals with the well-known dominating area law and the corresponding perimeter
dependence [25].
The differentials are Lorentz invariant phase-space factors:

dgilz = dy; = &p 8(p* - m?). (2.66)

In the light of this interpretation the generality of the parameter b is evident; it corresponds to the area
law parameter. The parameters a; are similarly together with the normalization constants N,z the
perimenter law parameters and the existence of different possible values for different flavours is rather
easy to understand.

2.7. Heavy particle production

2.7.1. Motion of massive constituents

In section 2.2.2 we studied the “‘yo-yo modes”, when massless q and g oscillate back and forth. Very
similar results are obtained for massive constituents, but it is necessary to make use of a different set of
particle orbits. For massive constituents (mass w) the motion is no longer along light-rays but along the
hyperbolae [11]

(x—x - (t— 1) =u?x*. (2.67)

These hyperbolae have, however, the straight lines corresponding to the motion of massless constituents
as asymptotes. A q and a § which move along the hyperbolae with centers (x;, #;) and (x,, t,),
respectively, can form a hadron with mass m if (x;, t;) and (x,, t,) satisfy the same condition as for
massless quarks, i.e. if

(1= Xa b — 1) = _—’:i (cosh y, sinh y) . (2.68)

Here y is the rapidity of the hadron as before. In particular, only the hadron mass m occurs in this
expression (but it is evidently necessary that m is larger than the sum of the masses of the constituents).
This motion is shown in fig. 2.24, which thus is the generalization of fig. 2.2. We note that the oscillation
time not only depends on m but also on u. However, this influences only the internal motion of the
hadron after the formation, and not the jet structure,

There is a conceptual difference with respect to massless constituents when a massive gg-pair is
created in the field. From the point of view of classical dynamics the production cannot take place at a
single space-time point if energy and momentum are to be conserved in the system. The classical motion
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Kmcoshly)

Fig. 2.24. The motion of a massive q and § in a system. Fig. 2.25. A pair qg of massive quarks is produced in the field and
move apart on different branches of the same hyperbola.

of the qg-pair is along the opposite branches of the same hyperbola, as shown in fig. 2.25. The
production of such a pair can be treated as a quantum mechanical tunneling phenomenon, as will be
described in section 3.

The only Lorentz invariant statement of the production is then related to the center of the hyperbola.
Thus with the centers of the hyperbolae taking the rdle of the production points and the turning points
for the massless case (i.e. where massless constituents have zero energy), the situation is very similar for
massive constituents. The model can be developed in exactly the same way as before, with the only
difference that the straight lines in the figures should be interpreted as asymptotes for the hyperbolic
worldlines of massive quarks.

In the symmetric Lund scheme heavier particles take more energy; the particles are ordered in
rapidity rather than in momentum. As mentioned above, this effect is hardly noticeable in the #/K/p
ratios. However, for particles with heavy c-, b- or t-quarks the effect is important.

2.7.2. Heavy quark fragmentation

If the production in the colour field of quarks with mass and transverse momentum can be treated as
a tunneling phenomenon, which well describes the suppression of strange quarks and p, (see section 3),
then the probability to produce a ct pair is extremely small (~10~'"). Thus, if heavy quarks only can be
produced in the initial hard process (in e.g. e*e” annihilation), and be at the ends of the stretched
colour field, then there is no compelling reason to demand a symmetric scheme for the fragmentation of
heavy flavours. However, if we anyway pursue the idea that a c-quark produced in the field with very
small probability behaves as a c-quark produced directly by the virtual photon, we would assume that
also heavy quark fragmentation is described by the scaling function f in eq. (2.50).

If we consider the fragmentation of some heavy flavour quark qo, then fig. 2.26 shows the formation
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Fig. 2.26. The generalization of fig. 2.7 to the case when the original quark qo is massive.

of the first hadron qo,. Here q, and @, are assumed massless for simplicity. The point A is the starting
point of the pair goGo. The rapidity of the hadron only depends on the point B on the hyperbola H, and
thus only on the mass m of the hadron. It is independent of the mass u of qo, which however
determines the hyperbola H,.

According to the considerations in the simple Lund scheme, we would obtain a flat scaling function,
f(z) = 1. The further corrections from collinear gluons and finite field sizes will tend to die away with
higher masses, but these corrections are anyhow small, also for light particles. Thus in the standard
Lund scheme the mean value of z, {z), should be close to

(2)=3 (2.69)

for charm and bottom fragmentation. This means that light particles produced behind the heavy one
will often obtain a larger rapidity.

This may seem unphysical, and actually Bjorken [26] has argued that asymptotically, i.e. for very
large masses M,

(z)=1-(1GeV)/M. (2.70)

This result can be derived from the assumption that all primary hadrons on the average are equally
spaced in rapidity. A similar result was also obtained by Bowler [23] from a generalization of the model
by Artru and Mennessier [22].

Our symmetric fragmentation scheme will predict an even harder heavy quark fragmentation. For
very large meson masses M we obtain asymptotically, due to the increased rapidity gap for heavier
particles

(2)=1-(a+1)/bM?. Q.71)
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Numerically we obtain for a = 1 and b = 1/2.25 GeV ™ that the first rank hadron in a u-quark jet will in
our scheme on the average be 0.28 rapidity units ahead of any other hadron, in a c-quark jet 0.65 units
and in a b-quark jet 1.24 units ahead (if compared to the second rank particle only, the differences are
0.55, 0.94 and 1.50, respectively).

If fig. 2.27 we show charm spectra for leptoproduction and e"e” annihilation (in the latter case we
also include charm from bottom decays). The experimental data favour a harder fragmentation
spectrum but the actual difference in (z) between the two models is not all that large. Only with bottom
are we in the asymptotic region where (2.71) applies. Since B mesons are hard to observe, one may look
at muons (and electrons) coming from semileptonic decays, either by the one-particle muon spectra,
with contributions both from charm and bottom, fig. 2.28, by same side wu*u~-pairs, dominated by
bottom, fig. 2.29, or by using the transverse muon spectrum with respect to the jet axis to enrich the
bottom contribution in the one-particle spectrum. Mark II has looked at the latter quantity and
concludes that the B meson spectrum indeed is harder than the D meson one [29].

We have here assumed that all the a-parameters are equal. The finite field length correction in the
standard Lund model arises from the fact that the field must not be too short for the energy to suffice
for the quark pair creation. As mentioned above this has an effect similar to the I'* factor in eq. (2.51),
suppressing small I'-values (and large z-values). As this effect becomes stronger for larger (transverse)
quark masses, it is tempting to assume that the a-parameter should be larger for larger quark masses.
This would make the fragmentation of a u-quark into a kaon or a proton (by production of a more
massive §-quark or diquark) softer and the fragmentation of a c- or b-quark into a D- or B-meson even
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Fig. 2.27. Charm fragmentation spectra for symmetric Lund, full line, and standard Lund, dashed, (a) in leptoproduction, data from CDHS (27}
(filled circles) and ES31 [28] (preliminary) (open circles), (b) in e*e” annihilation, filled circles Mark II [29], open circles TASSO [30], triangles
DELCO {31], open squares CLEO [32]. The former three data sets are around 30 GeV, as are the Lund model curves, while CLEO data are at
10.4 GeV, so that zp, = 0.39. Large systematic normalization errors may be present due to uncertainties e.g. in the D°- K~ #* branching ratio.
Contributions from B meson decays are included in the model calculations (and give rise to the peaks at low z).
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Fig. 2.28. Muons in (a) ¢ and (b) bb events (W =32GeV) as a function of |xel = 2| pLi/ W. Full line symmetric Lund, dashed standard Lund. In
e*e -annihilations ct events are 4/11 of the total cross section and bb events 1/11, while uii, dd and s§ events give no contribution to the prompt
muon spectrum.
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Fig. 2.29. The total |xgl = 2| pL1 + pLal/ W of opposite sign, same side
muon pairs in bb events (W =32GeV). Full line symmetric Lund,
dashed standard Lund. Contributions from ct events are small. Note
the vertical scale; only one bb event in 40 contains a same side u ¥~
pair (if electrons also may be identified, this rate can be quadrupled).
With only one event in 11 being bb, the rate is too small for detailed
studies at present energies, but at LEP it will be of interest.
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Fig. 2.30. When all the a-parameters are equal, the rapidity difference
between two heavy particles is larger than that between one heavy
and one light, which in turn is larger than that between two adjacent
light particles.

harder than the result presented above (eq. (2.71) and figs. 2.27-2.29). Although this cannot be excluded

it has presently no support in the experimental data.

We note that if a pair of heavy quarks would be produced in the field, the distribution in rapidity will
be as shown in fig. 2.30 in case all a-parameters are equal. The rapidity difference between the two
heavy particles is larger than that between one heavy and one light, which in turn is larger than that
between two adjacent light particles. If the a-value for the heavy quark is larger, the two heavy mesons
will come closer in rapidity and farther away from the light particles. Similarly a smaller a-value for the
heavy quark would push the heavy mesons away from each other. This would increase the invariant
mass of the heavy meson pair and decrease the number of produced light particles.

3. The tunneling process for local massive qq production

3.1. Preliminaries

In this section we will consider the local production of colour (33) pairs with mass and transverse
momentum in a uniform force field. We will show that the production process, which we for obvious
reasons will call “the tunneling process”, is governed by the strength of the colour electric force «
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acting on a colour (3) charge. For the particular case of an infinitely thin colour flux line—a vortex
line — this quantity corresponds to the tension in this stringlike force field. Most of our results are,
however, independent of the transverse size of the colour electric flux tube. It is sometimes useful to
picture the ensuing Gaussian transverse momentum fluctuations as an indication that the mean square
radius of the flux tube is

(FPy=72«. (3.1)

The assumption of a uniformity in the force field will, except for the constancy of «, also include the
property that there are no concentrations of energy, transverse momentum or angular momentum along
the field. We note that with such field properties massive (33) pairs (mass ) cannot be produced in a
single space-time point. Classically they must be produced at a distance 2/ apart so that the field energy
in between can be used for the mass production:

- 1=2p. (3.2)

Thus the production process is basically a quantum mechanical phenomenon.

The assumption above on the uniformity of the field implies strong similarities to a time-honoured
dynamical mechanism firstly invoked by Heisenberg and Euler [33] in the thirties, later by Schwinger
[33] in the fifties and recently by several authors [35, 36] in this context. (For a pedagogical treatment in
a QCD field theoretical setting cf. [34].) In the presence of an external, constant electromagnetic field
the no-particle state in QED is unstable. Its rate of decay may be interpreted as the production rate of
electron—positron pairs.

A simpler but equivalent formulation which is more useful for our purposes is to consider the
production as a tunneling process in a linear potential. With a knowledge of the wavefunction ¢ of the
particle at the classical turningpoint (x = +/) (and the wavefunction ;¢ for the antiparticle similarly at
(x=-1)) we may interpolate the wavefunctions into the classically forbidden regions |x| <[ by
WKB-methods. Such a calculation would in its simplest form give

W)= weexpi [ p)dx (33)

with
p(x)=V(E+rx)P—p?. (34)
In this way (cf. fig. 3.1) a particle with total energy E = 0 would inside the classically allowed region

x> be described by an oscillating wavefunction. For x <[ the wavefunction will be damped and in
particular the integral in eq. (3.3) is readily found to be

$(0) = Yc exp—(mu®/dk). (3.5)

We obtain the same result for the antiparticle wavefunction ¢,(x)= ¢(—x). If we take as a model for
the production matrix element 4 the overlap between the initial flat field (uniform wavefunction = 1)
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Fig. 3.1. A particle moving in a linear potential. For a given energy value E (which may be chosen as zero for a suitable choice of the origin in a
linear potential) the wavefunction is oscillating in the classically allowed region and exponentially damped outside it.

and the final state particle-antiparticle wavefunctions we expect
I o exp —(m/x) (3.6)

which is just the results of refs. [34-36] with x corresponding to the electric force.

It is for our purposes necessary to make a more precise calculation in order to take into account
finite size field corrections, but the basic tunneling result in eq. (3.6) will be the same. With the use of a
k-value determined as in section 2 (k = 0.2 (GeV/c)?) we obtain a suppression of the heavier strange (s)
and charm (c) quark pair production as compared to u- and d-quark pair production which may be
estimated as

u:d:sic=1:1:3:107". (3.7

This means in particular that charmed pair production essentially never occurs during a soft hadroniza-
tion process.

With the mass in eq. (3.6) exchanged for the transverse mass it is also possible to show that one
obtains a Gaussian suppression of transverse momentum [35, 36] and this has already been used in the
discussion in section 2.

We will in section 3.2 consider a simple model for the production of massive qg-pairs which we will
later extend to the case of pairs with transverse momentum. After that we will show that the size of the
wavefunction (¢¢) in eq. (3.5) at the classical turingpoint is not necessarily the same for all hadrons. In
particular we show by means of a simple model in section 3.3 that this effect will imply a suppression of
the vector to pseudoscalar ratio below the expected spin-counting result 3:1. Finally in section 3.4 we
consider a simple model for baryon-antibaryon production based upon diquark-antiquark production in
the field. We note in passing that in a process in which one of the participating original particles is a
baryon, there will evidently also be a baryon in the final state. This baryon fragmentation process is
considered in section 5.
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3.2. A simple model for the production of qg-pairs in a constant force field

In order to investigate the space-time properties of the tunneling production process we will consider
a simple dynamical model in which most of the mathematics can be done analytically.

We will describe the motion of a qg-pair attached to the endpoints of a flat string in accordance with
the space-time description in fig. 2.25. The Hamiltonian for a g-particle is given by

H=-«kx+Vp*+pu? (3.8)

and we obtain for the energy E = 0 the classical trajectory for the g-particle which is at rest at the time
t=0

pO)=xt,  x()=1V{FTa. (3.9)

For the corresponding {-particle we obtain the same result with « -»—«. The coordinate-space
trajectories are then the branches of the hyperbola H, in fig. 2.25.

The quantum mechanical wavefunction for the g-particle in momentum space with energy eigen-
value E is

sp)= Aexp(i ) o.(p) (.10)
)= exp— 5 [ VT 4 ptn(EEVEEL) ) 3.1

To localize the particle in time we study a wavepacket by letting A depend on E. The motion in time is
then given by

‘/’q(p’ t) = Aq(p/K - t) ¢q(p) (312)

with A the Fourier transform of A. The localization of the wavepacket is as usual the better the wider
the energy packet is; in particular for a constant A the wavefunction is §(p — xf). We expect that the
width of the wavepacket should be of the order m/«k so that the wavefunction of the produced gg-pair
should be localizable inside a final state meson with mass m. The wavefunction ¢(p, ¢) is obtained by
changing « - —« in eq. (3.12). The wavefunctions ,(x, t)(¥4(x, 1)) in coordinate space:

el )= [ Ao B 1) dpexpipx) oap) 6.13)

can however not be expressed in terms of elementary functions.

As a model for the production matrix element #(u, S) of a pair with the vertex situated in the origin
we take the overlap between the product wavefunctions (Yq(x, t) - ¥5(x, £)) and a constant correspond-
ing to the flat field integrated over the space-time region S where the field is nonvanishing:
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Mg, S) = f dx deo(x, £) by, 1) 1. (3.14)

It is then easily shown from egs. (3.10)-(3.13) above that for the case when S corresponds to all of
space-time

M, )= exp— ("2—:’1) ,Lf(gf)zﬁ f dz Ag(z) Aq(2) (3.15)

with uf a slowly varying function of its arguments
o A
2 —
uf =Im J da exp(i;jdA’VA’z—uz). (3.16)
n M

With proper normalization of the wavefunctions this essentially coincides with the results of refs.
[34-36).

It is also rather easy to convince oneself that, almost independently of the properties of the
wavepackets A, and A, the integral in eq. (3.14) obtains its principal contributions from the space-time
region

x| = w/x, |t] = w/x (3.17

and that the overlap-wavefunction .4, is exponentially decreasing in all directions outside this region.
We therefore expect the result of eq. (3.15) to be essentially unchanged for the production-matrix
element . (u, S) as long as the space-time region S includes the region in eq. (3.17).

There are, however, physically interesting situations when the available field region is smaller than
the region described in eq. (3.17). We note from the considerations of section 2 that in order to produce
a very high-energetic meson (having z close to 1), the field will have to break very early. On the other
hand, in order to produce a heavy mass pair q the field must be sufficiently long, i.e. we have to wait
until the original pair qoGo has come sufficiently far apart.

In fig. 3.2 we show a situation where this conflict is very obvious. In this case the heavy mass (1)

Fig. 3.2. The production of a heavy mass (¢) qq pair in the force-field from the original o pair which starts out in the space-time point O. The
invariant space-time distance 7 from O to the production vertex V is smaller than u/«, and the qg pair cannot classically be produced at rest inside
the field.
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qg-pair cannot (classically) be produced at rest inside the field. In particular the proper time 7 for the
production vertex is too small as compared to the quantity u/k. The Lorentz frame has been chosen
such that the difference vector OV (corresponding to the proper time 7) has no space-component. It is
obvious that the pair cannot be produced at rest in any other frame.

The available space-time region S is then much smaller than the region in eq. (3.17), in particular the
parameter

£=KTlp (3.18)
will for the situation in fig. 3.2 fulfil ¢ <1. We are then interested in the ratio g(u, €)

g(u, €)= M(p, 7)[ M (1, ) (3.19)
with M (u, S)=M(u, 7).

It is rather easy to show for g(u, £) that it

1. is small for small €

2. rapidly approaches 1 for ¢ > 1

3. is smoothly varying in between.
The precise behaviour is, however, not independent of the details of the model (the behaviour of A, i.e.
the boundary conditions etc.). Fortunately, for the applications we have in mind the detailed properties
of the ratio g are irrelevant. As a matter of fact, we find that different functions g with the properties 1-3
give almost identical results when used for the production of qg-pairs in quark and gluon jets.

Actually, if we use a parametrization which incorporates the properties 1-3 above, either as a linear
effect in &2 or as an exponential effect, i.e. we define vertex production factors |g;|* and |g.f*:

., & _ (k¥ _ T
&l = 1= rF e TR (3.20)
e/2
|g2l* = erf(%) = \/L; f exp(—x*) dx (3.21)

0

then the results for the final state distributions will differ only on the percentage level (for details cf. ref.
[36)).

This production vertex factor generally implies a suppression of the production of mesons with z
close to 1. In particular for values of z inside the region 1>z = 1-(u3/m?%) (m, is here the transverse
mass of the meson), the earlier constant probability (in z) from the simple Lund scheme is changed to
an effective behaviour ~(1 - z).

As an interesting consequence of this suppression for z ~ 1 we find that the single particle spectra for
a- and K-particles for z > 0.1 turn out to be rather insensitive to the ratio of vectors to pseudoscalars
produced in the jet. The size of this ratio is discussed below in section 3.3.

We note that the extension of the above-mentioned considerations to the production of transverse
mass in the field is straight-forward. Our assumption of no excited transverse degrees of freedom for the
force field implies that a qg-pair is formed with total transverse momentum equal to zero, i.e. with
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transverse components k, and —k,, respectively. The production amplitude for such a pair in the field is
given by eq. (3.15) with w—pu,, i.e. the transverse mass p, = Vu2+ k2. (Although the classical
trajectory for an endpoint of a string carrying transverse momentum with respect to the string direction
is not a hyperbola (for a discussion cf. refs. [12,36]), the hyperbola is the locus for the “effective”
longitudinal coordinate describing the endpoint and a small adjoining piece of the string (the part which
is “bent”).)

We note that this result provides a justification for the method of generating transverse momentum
in quark jets that was first suggested by Feynman and Field as an easily implemented phenomenological
recipe. Then the quark-pairs are assumed to be produced with compensating transverse momentum k,
weighted by the distribution ~d*k, exp(—k%/(0.35 GeV/c)?). There are in that case further no cor-
relations between the transverse and longitudinal dimensions.

In our situation there are such correlations, however, because of the vertex production factors |g|?
discussed above. It is physically evident that for large values of z when the available field length is small
and the parameter ¢ in eq. (3.18) is small, then the production of large transverse momenta will be
suppressed in the same way as large masses. The effect is, however, difficult to disentangle experiment-
ally, in particular when one also takes into account the transverse mass-dependence of the symmetric
Lund model in section 2.6 and the soft gluon emission effects in section 4.

3.3. The production ratio of vector to pseudoscalar mesons

In phenomenological models for jet fragmentation the relative production of vector mesons and
pseudoscalar mesons is usually determined by an adjustable parameter. This ratio is commonly set to
about 1:1, which is very different from the ratio 3:1 which would be obtained if the spins of quarks and
antiquarks, which combine to mesons, are randomly distributed. In this section we want to discuss the
reason for this relative suppression of the vector mesons.

Up to now, when we have considered the tunneling mechanism we have been satisfied to normalize
the wavefunction of the quark and antiquark to a fixed value at the classical turningpoint, where the
tunneling particle comes on shell. Implicitly, this assumes that the probability that the particle will fit
into the wavefunction of a final state hadron, is independent of the hadron. This is evidently only an
approximate relationship and we will here show that the spin-spin interaction implies a different
normalization of the quark or antiquark wavefunction at the classical boundary for final state singlet or
triplet spin states, i.e. for pseudoscalar or vector mesons. This will imply that the sizes of the
wavefunctions are different also in the classically forbidden tunneling region.

In order to exhibit these ideas in more detail we consider a very simplified model of the
wavefunctions involved. We begin with the production of a quark-antiquark pair in the neighbourhood
of the origin x =0. We study first a nonrelativistic wavefunction ¢ for a quark qo moving in the
potential V = —kx, which is given by a solution to the equation

Hy=0 (3.22)
D S
H= 2 pP+p—kx. (3.23)

The wavefunction ¢ will be exponentially damped to the left of the classical turningpoint x. = u/« and
will be oscillating to the right of this point, just as for the relativistic situation in section 3.2. A
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corresponding wavefunction for an antiquark g, (which is pulled in the opposite direction by the
constant force) is given by 5

Pa(x) = Y (-x). (3:24)

A model for the production amplitude of the qoqo-pair will contain the overlap of their wavefunctions
a(x) - (x). As before this overlap essentially vanishes except for a small neighbourhood around x = 0.

In a confined theory neither the quark nor the antiquark will however move away towards large
positive and negative values of x respectively. The quark in particular will end up in a meson state
together with a corresponding antiquark g, produced somewhere along the positive x-axis. Therefore
the Hamiltonian for the quark q in eq. (3.23) should actually be replaced by

H'=21;p2+K|x—§|+,u,+a§1-§28(x—§). (3.25)

Here 2(x — £) is the relative coordinate for qo and §; and we have normalized the potential so that
V =0 when this relative coordinate equals zero.

We have introduced a local spin-spin interaction for the pair qo; with a coefficient a. We note that
H' in eq. (3.25) is functionally identical to H in eq. (3.23) for x < ¢ with the exception of an added
constant k¢ This constant therefore plays the role of the energy of the state if we demand that the
classical turningpoint is still at x = x. = u/«k.

When « # 0 there are two states fulfilling the differential equation:

H'¢, = Eis (3.26)
E; = k& (3.27
with the index i denoting either a triplet or a singlet spin state.
From the relationship between H and H' noted above we conclude that the wavefunctions ¢, are
identical to ¢ (apart from normalization) for x < ¢ while for x > ¢, ¢; is given by the mirror image:
é:(x)= N; ¥(x), x<§ (3.28)
$i(x)= =N Q26— x), x>§. (3.29)
For the case with no spin—spin interaction (a = 0) the energy and the value of ¢ for the ground state
are determined from the condition that the wavefunction ¢, and its derivative must be continuous for

x = &. Thus

Po(b0) = ¢'(€0)=0. (3.30)

For a # 0 the derivative is not continuous but satisfies the condition

lim 5 ($1(6+ £) =~ $HE - #) = a5:S: 4(6) 331
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or

_19é) {-%a singlet
o) @81+ 5:= i triplet * (3.32)

According to the discussion above, the production amplitude is related to ¢(0)= N(0) and thus
proportional to the normalization constant N. To estimate N we note that the normalization integral
obtains its main contribution from the classically allowed region

ik <x <2€—ulk (3.33)

which implies

2 AT - E_l"~
2(§ K) N?-2 const . (3.34)

Thus the production probability, which is proportional to N is =E~*,

This general result, that N* has a power-dependence on the energy, i.e. the mass of the final state
hadron, and not e.g. an exponential dependence, is also borne out by a more quantitative analysis in our
simple Hamiltonian system. In particular, for a Gaussian approximation of the wavefunction, as
described in ref. [37], one obtains that

NN2=(E,- p)(E—~p)=p (for p=02) (3.35)

with the indices t and s for triplet and single spin states. For values of p below 0.2 the ratio N?/N?2 will
level off and always stay positive (for e.g. p =0, N?/N2=0.12 in the Gaussian approximation).

We have begun our discussion with the nonrelativistic Schrodinger equation. However, also for a
relativistic Hamiltonian like

H=Vp*+p2+«k|x|+ a8+ S, 8(x) (3.36)

the results are approximately the same, even if the operator Vp?+ u? is not a local operator.

We conclude that under very general conditions the spin—spin interaction term will make the triplet
wavefunction more spread out than the singlet one, as in fig. 3.3. We note in particular that with a local
spin-spin interaction the wavefunction in the classically forbidden tunneling region will have (almost)
the same shape for vector mesons and for pseudoscalar mesons. In a linear potential the width of the
classically allowed region, where the wavefunction is large, is proportional to E. Therefore the
normalization condition implies that the height of the wavefunction is roughly proportional to E~'2,

We now turn to the question how this normalization constant affects the tunneling probability. The
magnitude of the wavefunction at the classical limit, as well as in the classically forbidden tunneling
region, is proportional to N. Thus the probability for a quark to tunnel out into a meson is proportional
to N2 If the tunneling of the antiquark provides a similar factor, we expect a relative production factor
N*. However, in the basic fragmentation mechanism as described in section 2, the hadronization has an
iterative structure with a series of incoherent steps. The initial excited state decays into one meson plus
one less excited state, which in turn decays into one meson plus an excited state, etc. Each decay is
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Fig. 3.3. The shape of the wavefunctions for a particle tunneling out into a final triplet or singlet spin state is for a local spin—spin interaction

essentially the same outside the classically allowed region, while the size of the classically allowed region is larger for a triplet state than for a singlet
state.

determined by the tunneling probability and the density of states for the produced excited system. In
this picture we obviously obtain one factor N for the quark (or antiquark) which goes into the meson.
However the accompanying antiquark (or quark) will be part of a highly excited quark-antiquark
system for which we do not expect the spin-spin interaction to be important. Thus if the hadronization
can be treated in this way as a series of incoherent steps, where in each step one meson is produced,
then we only get one factor of N?, determining the relative production of a meson with spin 1 or 0.

Under these circumstances we expect that the production probability for vector mesons as compared
to pseudoscalar mesons should be in accordance with eq. (3.35), i.e. smaller than the spin counting
result 3.

Although the ratio in eq. (3.35) is difficult to evaluate quantitatively as it contains the quark masses,
we expect for K* and K a smaller relative suppression than for p and . In this case both the spin-spin
interaction and the mass difference is smaller. For D* and D the suppression is even smaller.

Further the discussion is only related to the relative spin-directions of the quark and antiquark in the
vector-meson. It is not dependent on the direction of the initial colour field (i.e. the jet direction). Thus
the phenomenological result that p:# ~1:1 is not caused by a strong suppression of certain helicity
states for the p-mesons, and we will not expect any sizeable polarization effects. This is consistent with
the results of the DECO Collaboration [38] for electro production of p-mesons. Their result for the
density matrix element poo is poo = 0.41 = 0.08. Admittedly the energy in this experiment is not very high
and it would be interesting to see polarization measurements performed at higher energies as a test of
our simple model.

3.4. Baryon-antibaryon production

One of the findings in e*e” annihilation is a surprisingly large yield of baryon-antibaryon pair
production [40}]. Similarly fast protons and antiprotons have been observed in inelastic muon scattering
[39]. This implies the existence of a mechanism for production of several quark—-antiquark pairs locally
in phase-space and the combination of three quarks to a colour singlet baryon. A deeper knowledge of
this process is of essential value for our understanding of the confining forces. '

Several different production mechanisms have been suggested. The baryons may be produced in a
stepwise manner, i.e. in e.g. an originally red-antired colour field, a blue-antiblue pair is firstly
produced and afterwards a green-antigreen pair [35]. It is also possible that a diquark in a colour
antitriplet state may be produced more or less as a unit together with a corresponding antidiquark
(41, 42]. Further, one may imagine that baryons are usually produced at the end of the colour fields so
that they contain the quark produced originally at the virtual photon vertex or that baryon production is
associated with the production of heavy flavours like c- and b-quarks.

The experimental data from inclusive spectra indicate that baryons are produced evenly over the
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whole allowed rapidity range. This seems to exclude the last two possibilities. The increase of the p/#
ratio with the Feynman xg-variable can be understood as kinematical effects due to the larger mass of
the proton (cf. section 2). There is a recent, excellent review [43] of the baryon-antibaryon mechanisms
presently in the market, and we will therefore subsequently discuss only the Lund model mechanism in
detail, with due remarks on the pros and cons of the model when compared to present experimental
data.

Only a small amount of experimental resuits on baryon-antibaryon correlations is available although
the TASSO Collaboration at DESY has excluded the possibility that they are uncorrelated [40]. Further
correlation studies will be essential in order to pinpoint the dynamical details.

Baryon production can also give valuable information about the topology of the colour field. As will
be described in section 4 hard gluon emission in the string picture implies that the colour field is pulled
along by the gluon. The transverse velocity of the field is transferred to the hadrons, and since the
baryons are heavy they will also get a relatively large extra momentum due to this velocity.

To be able to draw conclusions about the dynamics from the experimental data it is necessary to take
into account kinematical effects from resonance decays and from different particle masses.

It is also necessary to take into account the fact that a baryon is a symmetric state of three quarks
(with regard to flavour and spin). This implies that it is not possible to produce quarks according to a
classical probabilistic rule and let a combination of three quarks give a baryon with the same flavour. As
an example, neglect SU(3)-breaking and assume that u-, d- and s-quarks are equally probable. Then if
we take three quarks with parallel spins, the probability to get a uuu-system (4**) will be (3)* = 1/27.
The probability to get a uds-system (Y*°), disregarding the order of the quarks, will be 1-3-3=2/9, i.e.
much larger. If we project out on symmetric states we would instead (neglecting SU(6)-breaking effects)
obtain equal probabilities for all states in the ground state 56-multiplet. Thus, neglect of the baryon
symmetry would evidently give e.g. an overestimate of strange baryons.

We have developed a model in which diquark—antiquark pairs (colour 3-3) can be produced in a
colour field in a way similar to the production of a quark-antiquark pair [41]. This has the advantage
that it gives well-defined predictions with as few free parameters as possible. It is also an extreme model
in the sense that it gives very strong correlations between baryons and antibaryons. If the quarks are
e.g. produced in a stepwise manner [35] we may expect smaller correlations.

3.4.1. Description of the model

The diquark colour 3 is in our model treated as one unit and the suppression of baryon-antibaryon
production, as compared to meson production, is determined by a larger diquark mass compared to the
quark mass. We do not expect such a diquark, although equipped with certain quantum numbers like
spin etc., to correspond to a pointlike object, e.g. to be a single elementary excitation of a local
quantum field. For the small momentum transfers involved in the soft hadronization process we feel,
however, that also an extended object may have an effective coupling to the (constant) chromo-electric
field. Implicitly we expect that the density of virtual quarks along the field is high enough so that the
probability to find a partner quark in a colour antitriplet diquark state is effectively one. Then the
production probability for the diquark-antidiquark pairs can be treated by means of the tunneling
formula obtained above, i.e. it is

&?p. exp(—api/k) - exp(—mu’/k). (3.37)

In that way we obtain the following predictions:
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(i) A common Gaussian p, spectrum is obtained for all primary mesons and baryons. It should be
remembered, however, that further p, contributions come from hard and soft gluons (cf. section 4) and
that decays of resonances modify the spectra differently for baryons and mesons.

(ii) A baryon and an antibaryon will be neighbours in rank and thus close in rapidity.

(1) Equation (3.37) implies that for u >Vk/m~250MeV a small increase in u will give a large
change in the probability. Thus strange diquarks will be much suppressed compared to nonstrange
diquarks. Therefore, e.g. a A is more often produced together with a K and an N than together with a
A. Tt also implies that production of = and {2 is strongly suppressed.

Due to the large uncertainty in the determination of diquark masses eq. (3.37) cannot be directly
used for predicting the absolute size of baryon-antibaryon production. We have, therefore, in the Lund
model used expected diquark masses to fix the relative probability between the different diquarks but
fitted the overall ratio between diquark—-antidiquark and quark-antiquark production to the result of
the low energy Spear Mark II-data [44]. From the 4 GeV-region we find for the overall diquark to quark
ratio (summing over all spin and flavour states):

p(aq)/p(q) = 0.065. (3.38)

This corresponds to (nonstrange) diquark masses around 450 MeV which is clearly very reasonable,
showing that the scheme is consistent. The errors in the determination of the ratio in eq. (3.38) are
about 25% due to the systematic experimental uncertainties.

To fix the relative diquark probabilities we make the following assumptions about the masses:

m(udy) = 420 MeV , m(uu,) = m(ud;) = 490 MeV ,
m(uso) = 590 MeV , m(us;) = 640 MeV | (3.39)
m(ss;) = 790 MeV .

This gives the following probabilities
p((ud)o): p((ud)r): p(uu): p((us)o): p((us),): p(ss) = 1:0.35:0.35:0.06:0.02:0.007 . (3.40)

Note, however, that the spin-1 diquarks will get an extra factor of 3 from counting the different spin
states.

As stated before, the numbers in eq. (3.40) are very uncertain. A ud,-diquark (which has S=1=0)1is
expected to have a smaller mass than a uu- or ud;-diquark (both with §=1I=1). This difference,
coming from chromomagnetic spin-spin interactions is related to the A-3 mass difference, but to
extract it the quotient of strange to nonstrange quark masses has to be known. The figures above
represent the use of current algebra masses, whereas constituent masses would lead to a ud;—ud, mass
difference around 200 MeV. This corresponds to a spin 1 to spin 0 diquark suppression of 0.05 rather
than 0.35. It is interesting to note the stability of this simple model even with respect to such large
changes. In particular the spectra and total amounts of p, n and A are not sensitive to such variations of
the mass parameters. The increase in direct A production is, e.g., compensated by a decrease in
production via 3° and 3*. Decuplet production is reduced, for A :s by a factor 2.5. Again this is less
than what naively could be expected, but enough to make a determination from data meaningful in the
future.
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As mentioned above, a baryon is a symmetric system of three quarks. A basic property of the Lund
jet model is the assumption that the production of a certain qg-pair is determined by the density of
available final states. When a diquark joins a quark to form a baryon, we therefore weight the different
flavour and spin states by the probability that they form a symmetric 3-quark system. As for mesons we
neglect the orbital angular momentum and consider only baryons in the ground state 56-multiplet.

In the same way as vector mesons are suppressed (cf. section 3.3) we expect a suppression of the
decuplet relative to the octet states, in addition to the suppression implied by the diquark mass
differences. However, once again the spectra of p, n and A are insensitive to such a change.

3.4.2. Properties of the model

A. Even production in rapidity

In this model baryons are obviously produced evenly in the whole available rapidity range, and we
note that this reproduces both the increase in the production rate between 4 and 30 GeV in
e*e -annihilation data and the xg-spectra observed in e*e” annihilation and in pp-scattering (cf. figs.
2.15, 3.4). The proton data from TASSO at 34 GeV are fitted with a diquark ratio: P(qq)/P(q) = 0.085
[43] which is within the region allowed by the errors in the SPEAR data at 4 GeV. The p/# ratio
increases with xg as a result of the larger proton mass. Even if this increase is somewhat less than in the
experimental data, this does not allow for an important production of protons at the end of the jet (cf.
ref. [43]).

There are, however, indications that the model somewhat underestimates the A production relative
to the proton production [43]. As mentioned above this A/p ratio is rather stable against changes of the

D(z)

Fig. 3.4. Production of p, p, A and A versus z = Ey/v. The data points are results for p (@) and p (O) at 120 and 280 GeV from the
EMC Collaboration {39]. The agreement with data is somewhat improved (in particular at small z) if the experimental momentum range for proton
identification is taken into account.
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parameters, e.g. the decuplet suppression relative to the octet. This might indicate that the suppression
of strange diquarks is overestimated by the tunneling formula (3.37) which assumes that the diquark
tunnels out as one unit. This can only be checked by studies of whether a A is usually produced
together with KN rather than with A and of the production of Z-particles. (We here repeat the warning
that neglect of the symmetry properties of the baryon state could give erroneous estimates of the
strange baryon production.)

B. Baryon production in gluon jets

We note that if this baryon production model is combined with our model for gluon fragmentation,
described in section 4, where a gluon acts as a kink on a stringlike colour field, then we obtain a
somewhat higher fraction of baryons and antibaryons in a gluon jet than in a quark jet (cf. section 4.2).
Also the transverse velocity of the colour field between the gluon and the quark will give a larger extra
transverse momentum to baryons because of their large masses. Thus while in 2-jet events at 30 GeV in
e*e” annihilation the baryons will have a (p1) with respect to the sphericity axis of 0.23 (GeV/c)?
(corresponding to 0.15 (GeV/c)? for pions) in 3-jet events it is changed to 0.35 (GeV/c)? (compared to
0.21). The 3-jet event asymmetry discussion in section 4.3 is also much larger when studied for baryon
production. In section 4.5 we consider the effects of soft gluon emission which give extra p,-
contributions and discuss how baryon-antibaryon pairs can be used to investigate these effects.

C. Correlations

Because a baryon and an antibaryon in this model always share a diquark-antidiquark pair, we
obtain very strong correlations both in transverse momentum and rapidity. (Note however that these
correlations are somewhat distorted by resonance decays.) With respect to p,-correlations we obtain for
an observed pp-pair for the two cases when only 2-jets and when also 3-jet events are taken into
account:

(PupPup) _ {—0.30 +0.08  (2-jets only) 41)
p2) —-0.14%£0.92  (including 3-jets). .

The results for rapidity correlations are discussed in section 2.6.3 (cf. fig. 2.21a).

D. Polarization properties

As we will discuss in section 5.6 we expect strong polarization properties in the fragmentation of
stringlike colour fields. A A-particle is in our model usually produced from an s-quark and a
(udo)-diquark, and the spin of the A is given by the spin of the s-quark. The polarization of the s-quark
depends on the direction of the colour field, i.e. which is the quark end and which is the antiquark end.
In a leptoproduction event with sufficiently large xz we know that there is a (valence) quark at the
current end of the field. Thus, according to the arguments in section 5.6 we expect A-particles to be
polarized along Q x P, (with Q the current direction).

Due to the suppression of strange diquarks a A(A) is in our model mostly produced together with a
KN(KN) state. However, when a AA pair is found it usually shares the same ud,—ud, pair. Because
these diquarks are spinless we expect no correlation between the polarization of the A and the A.
However if the A and A share the s- and §-quark from the same ss-pair, then one expects a positive
correlation i.e.

P pi>0. (3.42)

This might be expected if the diquarks are not produced as entities but in a stepwise manner as in ref.
[35].
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4. Gluon fragmentation

This section deals with various hadronization effects related to gluons. In the first subsection we
discuss, in general terms, some models for the fragmentation of jet systems including gluons. The
confinement of colour force flux lines leads to essentially two possible structures of the force field in a
quark-antiquark—gluon jet system, which both can be described within the string model. In section 4.2
one of these cases, the possibility to have a localized excitation (‘kink”) on the massless relativistic
string, is used to construct the Lund model for a gluon in the string picture. The dynamics of such a
string system and its subsequent fragmentation into hadrons are discussed. The general three-jet event
structure arising in different models is discussed in section 4.3, where in particular an interesting
asymmetry in the particle distribution is compared with data from the JADE group at PETRA.

Details of how a jet system including a gluon can arise due to perturbative QCD are given in section
4.4, and the problem with divergences in matrix elements is discussed as well as their treatment using
cuts in a Monte Carlo program. In section 4.5 effects due to the emission of soft and collinear gluons are
derived and the resulting physical observables are indicated. A comparison of the predictions of the
model with experimental findings in both e"e~ annihilation and deep inelastic lepton-nucleon scattering
is made in section 4.6. Some characteristic features of perturbative QCD at the parton level are seen to
be well observable also at the hadron level (e.g. planar three-jet structure) but others (like angular
energy flow asymmetry in leptoproduction) are shown to be washed out in the hadronization process.
The recent debate about the influence of the hadronization scheme on the determination of a; in e”e”
annihilation is also discussed in that subsection. Finally, in section 4.7, the decays of heavy onium states
into gluons and the resulting string structure are briefly mentioned.

4.1. Models for gluon jets

Since free colour charges do not seem to appear in nature, a gluon is always part of an overall colour
neutral system, and a high energy gluon should produce a jet of hadrons just like a quark does. The
problem of gluon fragmentation then contains two basic questions:

A. How is the confining colour field stretched between the gluon and the other colour charges in a
colour neutral system? '
This question is mainly important for low energy particles. For fast hadrons in a high energy gluon jet,
the other quarks and gluons can be treated as if emerging in the direction opposite to the gluon. Thus
the second question is:
B. What are the longitudinal and transverse distributions and the flavours of the fast hadrons in a high
energy gluon jet?
The simplest colour neutral system including a gluon is a quark-antiquark-gluon state in an e*e”
annihilation event, and we choose this system to begin with as an illustration. A basic assumption is
then that there are two space-time scales involved. On the short scale, characterized by the QCD
parameter 1/A = 0.4 fm, the coloured objects behave as essentially free particles and perturbative QCD
is applicable. In particular the quark (or the antiquark) can radiate hard gluon bremsstrahlung at a rate
determined by the strong coupling constant a,. The longer scale starts when the partons have begun to
move apart and feel the confining colour forces. The energy is now transformed into hadrons and in this
phase perturbative QCD is no longer useful.

When one studies properties which are less sensitive to low energy particles (e.g. inclusive x¢ and p,

spectra, thrust distributions etc.) it may be possible to neglect the first question, about the colour-field
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structure in the system, and treat the three jets as independent jets emerging from the origin in the CM
frame. This is the usual extension of the Field~Feynman model [7] for the fragmentation of a quark-jet
to a system of jets. Models of this kind do not always conserve energy, momentum and flavour exactly
but rather as properties on the mean. Neither are they manifestly Lorentz invariant, since a specific
point in a certain Lorentz frame is chosen to join the jets. At high enough energies one would, however,
expect the errors to be small when the interest lies mainly on the fast particles so that the joining in the
center is less important. This is essentially the line followed in the Hoyer et al. [45] and Ali et al. [46]
Monte Carlo programs, but with the addition of special routines that ensure energy, momentum and
flavour conservation by suitable adjustments of the jets “post facto”.

For studies of quantities constructed to be as independent of hadronization as possible (e.g. angular
energy flow and thrust) it may also be possible to neglect the second question and treat the gluon as a
quark jet, giving a random flavour to the leading quark (and possibly also using a softer fragmentation
function) as is done by Hoyer et al. [45]. However, we will see below (sections 4.3 and 4.6) that such
measures are often more sensitive to the hadronization than originally expected.

These approximations may be sufficient when investigating effects of perturbative QCD, e.g. hard
gluon bremsstrahlung. However, to gain understanding of the confinement mechanism we have to
answer the two basic questions above.

The general property that colour force-fields do not spread out in space but are confined to thin flux
tubes allows essentially only two ways to connect the three colour charges (qqg) by colour fields. The
simplest possibility (case I), is to connect the gluon directly with the quark and the antiquark as in fig.
4.1. These flux tubes then contain colour triplet fields of the same kind as between a quark and an
antiquark in an ordinary 2-jet event as discussed in the previous sections. This is also the assumption in
the Lund model [108].

A second possibility (case II), discussed by Montvay [47], is that each parton stretches a colour flux
tube, which is connected to the other two in a junction as shown in fig. 4.2. The colour field between the
gluon and the junction is here of a different nature, with colour octets at each end. (The third possibility
that one of these cases is complemented with a flux tube also directly between the quark and the
antiquark seems very artificial.)

Due to causality and relativity the potential energy from a confined field cannot depend only on the
distance between a quark and an antiquark. Fig. 4.3a shows a quark and an antiquark connected by a
confined colour field. If the quark gets a kick it will move and pull the field along with it. The antiquark,
however, cannot notice anything until it is reached by a signal travelling with the velocity of light. Thus
we expect the field to move as in fig. 4.3b-d. A bend moves, with the velocity of light, along the field

9/ s/

Fig. 4.1. The simplest possibility to connect the three colour charges Fig. 4.2. The gluon stretches an octet field (with string tension «,)
in a qdg jet system is with an ordinary colour triplet field (with string which joins the two triplet fields (tension «) in a junction.

tension «) stretched via the colour octet gluon. The velocity of a string

piece is v = cos 6/2.
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Fig. 4.3. The motion of the colour field when the quark gets a kick illustrates that the antiquark cannot notice anything until it is reached by the
disturbance of the field which moves with the velocity of light.

towards the antiquark. When the quark is retarded its lost transverse momentum must be carried by the
field.

We note that when an electric field is boosted transversely one also gets a magnetic field and a
momentum density in accordance with the Lorentz transformation of energy-momentum. If the
transverse dimensions of the field can be neglected, a very strong electric field in a very thin tube
behaves as the massless relativistic string discussed extensively by Artru in [12].

In this string approximation, where the transverse dimensions of the field are neglected, we note that
for the first colour-field configuration (case I shown in fig. 4.1) the gluon acts as a kink on a string
stretched between the quark and the antiquark. In the second case (fig. 4.2) there is a colour octet string
with a different tension, ., between the gluon and the junction. The position of the junction depends
on the relative sizes of the tensions in the colour octet and colour triplet strings. We note that for
ke =2k (where « is the tension in the colour triplet string) it will cost too much energy to stretch the
colour octet string and it will collapse to zero length and case II will go over into case 1. As we will
discuss further below, experiments seem to favour either case I (fig. 4.1) or case II (fig. 4.2) with a rather
large value of «, such that the octet field becomes short.

Turning now to question B above (concerning the fragmentation properties of a gluon jet), we first
note that the gluon fragmentation function is, at present, not at all well determined experimentally.
Further experimental studies are important to distinguish between different models.

With the Lund model recipe for the question about the colour-field topology (question A) we also get
directly an answer to question B. If the gluon acts like a kink, or a transverse excitation on the
colour field between the quark and the antiquark, we can use the method for breaking this field as
developed in previous sections. This will be further discussed in the next subsection. We note that
treating the gluon as a kink on a string is easily generalized to situations where more than one gluon has
been emitted. The string will then be stretched from the quark (colour triplet) via each gluon (colour
octet) in turn and finally end up on the antiquark (colour antitriplet). The field will be a simple colour
triplet field all the way and after the formation of the leading hadron at each hard gluon kink has been
considered, what remains is a number of simple string pieces that fragment in the usual way. We also
note that this scheme is infrared stable in the following sense. Many soft gluons will correspond to many
small bends on the string. The string can, however, break into pieces in much the same way even if it is
not completely straight and one obtains a smooth transition between hard and soft gluon emission. We
will discuss this point further in section 4.5.

In the Monte Carlo program by Ali et al. [46] it is assumed that the gluon splits into a quark and an
antiquark which share the total gluon energy according to the Altarelli-Parisi splitting function for
g->qq. This quark and antiquark could then (although this is not done in [46]) naturally be connected to
the original antiquark and quark respectively to form two colour singlet systems, giving a field structure
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as in case 1. However, such a scheme for gluon fragmentation is not automatically infrared stable in the
sense discussed above; some cuts have to be introduced to prevent small invariant masses for the two qq
systems.

If the colour field topology is as in the second case with a colour octet field at the gluon, we have to
study how this field fragments. The octet field cannot break simply by the production of qg-pairs.
Instead it could break by gluon pair production. Thus we could expect the production of glueballs and
SU(3) singlets, as suggested by Peterson and Walsh [48], which would give more '-, @- and ¢-particles.

4.2. The Lund gluon model

In the Lund model a gluon is treated as a kink, or a transverse excitation, on a stringlike colour force
field between a quark and an antiquark. This is in a sense an extreme model because it contains no new
elements or parameters. Quark-antiquark pairs are produced in exactly the same way as discussed in
section 2. The only complication is the corner of the string at the gluon, which is handled by letting the
string break at both sides of the kink in the usual way, but with the constraint that the hadron thus
formed (and which also contains the gluon-kink) has the correct physical mass. Thus, an important
assumption of the model is that it does not matter whether the string piece is straight or has a bend
when projecting it onto a physical hadron state.

As discussed by Artru [12] a one-dimensional linear force-field can be generalized, in a relativistically
invariant way, to three dimensions by the dynamics of the massless relativistic string. On such a string it
is possible for a pointlike part (away from the endpoints) to carry energy and momentum. Such a
localized excitation, a kink, moves with the velocity of light and is pulled back by the string by a force
which is twice as strong as the one acting on an endpoint quark. The kink thus acts much like a gluon,
since in QCD with N colours it has been suggested that the ratio between the forces on a gluon and a
quark is 2/(1-1/N?), i.e. 9/4 for three colours and 2 for infinitely many colours. The dynamical
mechanism for creating such a kink on the string can e.g. be hard gluon emission in perturbative QCD
to be discussed below, but we will in this subsection concentrate on the motion and subsequent decay of
such a string system once it is formed.

We will start by considering an originally straight string segment L with a qg-pair (qo and Go) at the
endpoints in the previously described yo-yo mode. At the initial time a large momentum Q is suddenly
transferred to the point C on the string, fig. 4.4a. In the subsequent motion, fig. 4.4b, two straight string
segments L, and L,, which connect C to the original string L at the corners D and E, will start to move
outwards. The points C, D and E all travel at the velocity of light. Energy and momentum is all the time
flowing away from C and the energy-momentum lost by C is stored in the string segments L, and L,.
The gluon-kink loses its energy equally rapidly to both string segments attached to it, independently of
their angle « (see fig. 4.1) to the gluon momentum, as can be realized in the following way. The string
piece actually drawn out by the gluon per unit time is proportional to cos a, but this piece also moves
with a transverse velocity B =sin & and thus has an energy density per unit length which is a factor
1/cos a higher than for a string at rest. The net effect is that the gluon loses the same amount of energy
to each string segment and in total twice the amount lost by a quark stretching a single string. The
retarding force acting on the kink C is therefore opposite to Q and equals 2«, where « is the tension in
a colour triplet string as discussed before (numerically x = 1 GeV/fm =~ 0.2 GeV?). We note, as shown in
[12, 108] that also for a (massless) quark stretching a string at some angle a, the retarding force equals k
and is directed opposite to the quark motion independently of a.

After some time the string field will obviously break along the two segments L, and L,, see fig. 4.4b.
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9
a b

Fig. 44. (a) The initial state when a large momentum @ is transferred to a point C along the string in a yo-yo mode. (b) The momentum-carrying
kink-singularity C moves away along Q and qg pairs are produced along the string segments L; and L.

The reason is that the systems §;qo and q,qo will contain sufficiently much energy and momentum to
form meson states. The remainder of the “kink-jet”” will in the lab frame move as a rigid body. At some
later time the string will break again producing a new hadron and so on.

To study the particles in the gluon-kink fragmentation region, that is the mesons with large energies
in the lab frame, it is convenient to transform to a Lorentz frame moving very fast along Q with respect
to the lab frame so that these mesons are slow in this frame. In this new coordinate system the whole
gluon jet will look like a thin “hair pin” jet, i.e. the string segments L; and L, will have a very small
relative angle. Actually the whole original string piece L will be seen moving away with large velocity.
The motion in space-time has some similarities to the motion of a soft g-particle as discussed in
connection with fig. 2.7. The difference is that there are two adjoining fields, i.e. the kink is spanning a
“folded” space-time sheet with two surfaces adjoining along the space-time orbit of the kink as
illustrated in fig. 4.5. In the points A; and A, qg-pairs are formed in the two field sheets and the
4:-particle is accelerated along the field in L, while the g,-particle is accelerated in the field in L,. As
mentioned above, we make the important assumption that the remaining pair q,J. can form a bound
state together with the kink C if the total energy-momentum of the system corresponds to a bound state
meson.

Defining the variables z; and z, from

Z; = l,/2L, 0<Z,‘<%, i= 1,2 (41)

where [, and L are the distances as indicated in fig. 4.5, we find that the light cone variable
z=(E+p)(E+ p)o for the meson q,G,C is given by z = z;+ z,. The masses M; and M, of the
remainder systems qqd; and goq. are given by

M? o (3—z,)W2. 42)

(The proportionality constant is determined by the original position of the kink on the string.)
The leading meson q,3,C is a folded string in one dimension whose state of motion depends on the
positions of the points A, and A,. The only restriction for these points is the condition that the meson
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Fig. 4.5. The space-time motion of a kink C and the two adjoining string-fields ending in qo and Gp.

has mass m which implies
k2L + L)y + hy) = m*V2 4.3)

where h;, and h, are the distances as shown in fig. 4.5. Different points A, and A,, which satisfy this
condition give different relative momenta for the q;, . and the kink C in the string. Since we have
assumed that all these states have the same projection on a physical meson state we conclude that the
relative probability for different z;-values is determined by the density of states in the remaining
systems, i.e. in accordance with the “simple Lund” prescription (see section 2.4) we obtain:

dP x dn, dn, x dM}dM3 x dz,dz,. 4.4
Thus normalization gives
dP/le d22=4, O<Zi<%. (45)

The total number density of mesons with a fraction z of the gluon-jet energy is then given by

172 172

dn _ 3 dP _ (6G—2z,-2) z 0G—2,-2) z
dz ~ Daon(2) = Oj dz, J dz, dzrdz, { -z, D(%— zl> - z D(%— 22)
+8(z— 20— zz)} (4.6)

where D(z)=1/z is the fragmentation function for a quark jet. The first two terms in eq. (4.6)
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correspond to the two *‘ordinary” quark jets along L, and L, while the third contribution corresponds to

the state q,q,C.
The integrals are trivial and one obtains

_(2+4z+427 z=1/2
ZDgyon(z) = { 4z(1- z) z=1/2. 47

We note that although Dy, is twice as large as Dguan (=1/2) for z—0 and has an extra power of
(1-2) for z->1 it is not just 2(1 - z) Dguan. In case there are several different flavours of the
qqg-particles and several different mesons produced in the jet, we must supplement the relative
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Fig. 4.6. The gluon fragmentation functions Dy(z) (full lines) into pions (a), kaons (b) and protons (c) compared with the corresponding u-quark

fragmentation functions {dashed lines). The “standard Lund” model has been used.
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Fig. 4.7. The z dependence for ratio of the fractions of protons and K* in a gluon jet to a u-quark jet.

probabilities in the same way as was done for quark jets. In a similar way as for quark jets, when going
from “simple Lund” to “standard Lund” (section 2.6), there are also corrections to the gluon
fragmentation function eq. (4.7) due to effects from soft gluon emission (section 4.5.1) and finite field
lengths (similarly as in section 3.2). For details of this last point and also more detailed formulae for the
gluon fragmentation, in particular for more general string configurations, we refer to [13].

For all studies in this section we have used the “standard Lund” model, i.e. the newly developed
left-right symmetric fragmentation (discussed in section 2.6) has not been used.

As an example of the resulting distributions we show in figs. 4.6a and 4.6b the 7- and K-spectra. For
comparison we have also indicated the quark fragmentation functions as obtained in section 2.6.

As described in section 3.4 baryon-antibaryon pairs can be produced via diquark-antidiquark pair
production in the breakup of the colour force-field. This leads to the gluon fragmentation function into
protons as given in fig. 4.6c. We note, see fig. 4.7, that the fraction of baryons increases more with z in a
gluon jet than in a quark jet. This reflects the simple fact that when producing a first rank particle in a
quark jet only one breakup of the field takes place and there is consequently only one chance to
produce a diquark pair. For a higher rank particle in a quark jet and also the first rank particle in a
gluon jet, two breakups occur and there are two chances to produce a diquark pair since that
probability is the same in each breakup. Therefore, a leading particle in a gluon jet (including the kink
and quarks/diquarks from two breakups) has roughly twice the probability to be a baryon or antibaryon
as compared to the leading particle in a quark jet.

4.3. Event structure for 3-jet events

The simplest system with a gluon is a qdg state in e"e” annihilation. In the Lund model this is
represented by a string with a kink, which is stretched and breaks into pieces as illustrated in fig. 4.8.
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Fig. 4.8. The space-time development of a quark-antiquark—gluon event. The quark and antiquark move along the directions marked q and g and
are at the endpoints of a string field. The gluon is a pointlike energy-momentum carrying piece of the string moving along the direction g, thereby
causing a triangular shape of the outmoving string-field. The field breaks by the production of q pairs and the directions of the final state mesons
are marked by arrows when they become independent entities. (Note that the slowest mesons in the cms are the first ones to emerge, and also take

the largest pieces of the string.)

The relativistic invariance of the model implies that we avoid the selection of a fixed point in a
particular Lorentz frame (e.g. the origin in the CM frame) to connect the jets. A very essential feature is
that the force field is stretched from the quark to the antiquark via the gluon. The kink on the string is
handled by letting the string break at both sides of the kink in the usual way, but with the constraint
that the hadron thus formed has its correct physical mass. Then two separate pieces of string remain
which are each one a one-dimensional quark-antiquark system, moving with a velocity v = cos(6/2)
transverse to their longitudinal direction (see fig. 4.1). These systems can then fragment in their own rest
systems in exactly the way described in section 2, and then be boosted back to the overall CM frame of
the original qqg system. The hadrons produced in each such subsystem appear as back-to-back jets in
the CM frame of the subsystem, but when boosted back to the overall CM frame they will be
distributed along two hyperbolae in momentum space as illustrated in fig. 4.9. The typical distance from
the hyperbolae to the origin is around 300 MeV for primary particles, i.e. of the same order of

o

l_) \\\

Fig. 49. The momentum space distribution of the final state particles which appear in the mean along two hyperbolac. The size of the strokes
indicates the size of the transverse momentum fluctuations in a string field without excited transverse degrees of freedom.
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magnitude as the typical fragmentation p, in a jet. It has been pointed out in [49] that this leads to
characteristic correlations between multiplicity and angular distribution, namely fewer particles in the
angular region opposite to the gluon jet. An asymmetry of this type has been observed by the JADE
Collaboration at PETRA in the following way.

In a selected sample of events showing a 3-jet planar structure they studied [S0] the angular
distribution of particles in the three different regions between the three reconstructed jet axes, which
are ordered in decreasing jet energy. The result, see fig. 4.10, shows that there are more particles in the
angular region between the softest jet (according to perturbative QCD usually the gluon jet) and the
two harder jets and fewer particles between the two harder jets (usually the g- and g-jet). These results
are in good agreement with our model having a string stretched via the gluon; the absence of a string in
the angular region between the quark and the antiquark explains why there are fewer particles in that
region. The effect is partly of a kinematical origin since the angular regions are different, but a model
where the three jets fragment independently of each other and are joined at the origin in the CM frame
(dashed lines in fig. 4.10) cannot reproduce this experimental fact equally well. The fragmentation
parameters for quark- and gluon-jets were here separately chosen to give the best possible agreement
with the data for the particle flow within the jets (g # q model, with a softer fragmentation function and
a higher (p,) for the gluon jet), but the result is essentially the same if the gluon jet is just assumed to
fragment like an ordinary quark jet (g = q model). Note that the effect inherent in the Lund model is
very much larger than the one visible in the figure, but since the gluon jet is misidentified in a large
fraction of the events, only a remnant of the “true” effect survives.

Since, in the string model, these phenomena are associated with the boost from the subsystem of
each string piece to the overall CM frame, they should be more pronounced for particles with larger
mass or larger momentum out of the event plane, i.e. transverse to the boost direction. We thus expect
a larger effect from particles with high p,.., as well as for kaons (and even more for protons). This seems
validated by the data in fig. 4.11 and in table 4.1, which shows the ratio of the number of particles in a
central angular range between jet no. 1 and no. 3 to the number between jet no. 1 and no. 2. Also note
that the effect is even larger in energy flow than in particle number flow.
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Fig. 4.10. The average number of particles between the indicated
jet-axes versus the normalized angle projected onto the event plane.
Jets are ordered so that #1 is most energetic and #3 least energetic,
see insert. The data from the JADE Collaboration [50] are shown
together with model results.

Fig. 4.11. The distribution of particles with p3®<0.2GeV/c and
p>0.4GeV/c in the three-jet regions, normalized to 1 separately
for each region [50]. The data from the JADE Collaboration show
that the effects are larger for particles with larger p$*, as expected in
the Lund model.
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Table 4.
The ratio of the number of particles {or energy) within 0.3 < 8/8; <0.7 between jets #3 and #1 to the

1
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corresponding number between jets #1 and #2 together with the statistical uncertainties [50]

Hoyer model
Particles Data Lund model g#q g£=q
ratio of all 1.39+0.04 1.33£0.03 1.09+0.03 1.03+0.03
number of p*<0.2GeV 1.36+0.05 1.27+0.04 1.09+0.04 1.05+0.04
particles p>0.4GeV 1.8+0.2 1.61£0.12 1.18+0.12 1L12x011
K 1.9+0.2 1.70£0.16 1.14x0.1 1.0+£02
ratio of
energy all 1.56 £0.04 1.50 £0.03 1.20+0.03 1.09+0.03

In this sample of 3-jet events it has also been observed [51] that the mean p, in the lowest energy jet
(usually the gluon) is somewhat larger than the corresponding values for the other two jets, fig. 4.12.
Such an effect is expected in a string model since the gluon stretches two strings at some relative angle.
However, if the gluon has a softer fragmentation its jet axis will be less well determined experimentally,
which leads to a somewhat increased {p,) in the jet. It also matters whether the leading quark is given a
p. with respect to the jet-axis, as in Field-Feynman, or not, as in our model. From second order QCD
one would also expect, due to the possibility for the gluon to split up into two gluons, a somewhat
broader gluon jet. Without using the string scheme or second order effects, the fragmentation p, in the

gluon jet would have to be ~50% higher than that in a quark jet.

It is interesting to note that the Montvay scheme with the colour octet field from the gluon to the
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Fig. 4.12. The mean transverse momentum of the hadrons in the three different jets, with jet energies arranged so that E(#1)> E(#2) > E(#3). In
(a) the experimental data from the JADE Collaboration [51] are shown, in (b) the results in a model where jets fragment independently in the CM
frame and the gluon fragments like a quark, in (c) the same when the gluon jet is assumed to have a fragmentation p, 50% higher than tbat of a

quark jet, and in (d) the Lund model results.
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junction (case II in section 4.1), in a sense interpolates between the event structure obtained in our
string model and the one obtained in models with independently fragmenting jets. If the junction is
close to the gluon our model will be obtained as a limiting case. If, on the other hand, the junction is
not close to the gluon, an event structure may be obtained (depending on how the octet “slip”
fragments) which resembles the one resulting from independent jets. We note, however, that the
junction will be at rest at the origin in the CM frame only for very special jet configurations, namely
when the forces on the junction from the three string pieces exactly balance.

4.4. Gluon emission in electron—positron annihilation

After presenting this model for the fragmentation of a gluon jet we need to be more specific about
how the initial state of partons is obtained. It is given by the initial interaction as described by the
parton model and quantum flavour dynamics and gluon emission due to perturbative QCD. To be more
specific the lowest order process e"e¢™ - qg (q event) is in first order QCD modified by the probability
for gluon emission, i.e. by the process e'e”—qdg (qdg event). The matrix element for this is
conveniently given in terms of scaled energy variables in the CM frame, x, =2E /W, x,=2E;/W and
x3=2E,/W, where W is the total energy in the CM frame (i.e. 2 x; = 2). For massless quarks the cross
section reads [52]

dogg a(Q))2  xi+x3
_d0qae _
dedx, 7" 7 3 (1=x)(1-x) “9)

where oy is the well-known Oth order cross section and a,(Q?) is the running strong coupling constant

N 127
Q)= G3=2n) m(0717) “9)

with n; being the number of active quark flavours and A the parameter in QCD.

The kinematically allowed region is 0 =< x; <1, i =1, 2, 3. The cross section diverges for x; or x,—> 1,
but when the first order vertex and propagator corrections also are included, a singularity with the
opposite sign appears in the qg cross section, so that the total first order cross section becomes finite

o1 = oo(1+ a(Q¥)/7). (4.10)

Physically, this cancellation corresponds to the difficulty to distinguish a single quark from a quark
accompanied by a soft or collinear gluon. Specifically for QCD, where the experimentally observable
entities are not quarks and gluons but hadrons, we expect the general properties of a qGgg event to
approach those of a q4 event when the gluon becomes soft or collinear. As will be shown below this is
indeed the case in the Lund model.

In a Monte Carlo program the problem of divergences may be solved by imposing cuts, so that
events with hard gluons are generated according to the matrix element in eq. (4.8), but events with a
soft or collinear gluon are lumped together with the two-jet events. The Lund string model provides a
natural cutoff for these divergences.

For a collinear gluon the energy in the field between the gluon and the quark (or antiquark) is so
small that it cannot break to produce a meson at the end. The first break will then be on the other side
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of the kink and the leading (first rank) particle will contain the whole string piece between the quark
and the kink. The gluon and the quark will then look just like a single quark jet. We thus find a smooth
transition between the 3-jet and 2-jet events. For a rather small angle between the quark and the gluon,
the distribution of particles in momentum space will be as indicated by the shaded area in fig. 4.13. Note
that the hadron which includes both the quark and the gluon can in this way obtain an energy which is
larger than each one of the initial quark- or gluon-jet energies.

In case of a soft gluon we also obtain an effective 2-jet event if the energy of the gluon is so small
that it stops before the string starts to break. The effect of the gluon will then essentially be a small p,
broadening of a 2-jet system as illustrated in fig. 4.14.

S N NN
LTRNAN
! s
Fig. 4.13. The momentum space distribution of final state hadrons in Fig. 4.14. The momentum space distribution of the final state particles
the case of almost collinear gluon and quark momenta. The size of the in the case of a soft gluon. The same notation as in fig. 4.13.

hatched area indicates the size of the transverse momentum fluctua-
tions in a string field without excited transverse degrees of freedom.

The singularities encountered in the gluon emission probability are thus regularized in a natural way
by the soft fragmentation process. In order for a description of the strong interaction in terms of quarks
and gluons to be meaningful, a necessary requirement is infrared stability. By this we mean that the
effects of soft or collinear gluon emission on the observable hadron momenta should vanish when one
approaches the singularity. (We note that, in contrast, a model in which the jets are assumed to
fragment independently and then joined in the CM frame is not explicitly infrared stable.)

The cutoffs we use for soft and collinear gluons are expressed in terms of requirements on the
invariant masses M., M;, and M,,, where M, is the invariant mass of the quark—gluon subsystem etc.
Note that the cutoffs are in this way explicitly Lorentz invariant as opposed to e.g. a requirement of a
certain energy fraction outside a specified Sterman—-Weinberg cone. The exact numerical value of the
cutoft can, within some reasonable limits, be chosen arbitrarily since a change merely corresponds to a
theoretical reshuffling of (2-jet like) events between the classes of 2-jet and 3-jet events. The values
actually used in our model are those given in [13], i.e.

My, My, =4GeV, M M /M;=2.8GeV @.11)
(for massless quarks).
4.5. Effects due to emission of soft and collinear gluons

The soft and collinear gluons avoided with cuts in a Monte Carlo program can, however, not be
totally neglected since they do in fact produce observable effects. In order to get a better understanding
of these effects we first study the situation in the particular coordinate system where the gluon is moving
transversely to the direction of the back-to-back motion of the qq pair, fig. 4.15. The gluon transverse
momentum is during the classical motion of the string system transferred to two string segments which,
after the gluon is stopped, will move one in each direction. As will be discussed in more detail in section
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q
Fig. 4.15. The space-time motion of a soft kink-gluon, which is stopped before the string breaks up, in a Lorentz frame where its momentum is
transverse to the (back-to-back) motion of the endpoint q- and g-particles. The transverse momentum of the kink-gluon is transferred to two
straight string segments, which after the stopping moves in opposite directions. The transverse momentum carried by a string piece, like the one
marked out in the figure, is proportional to its length.

5.3.1 the transverse momentum carried by a string piece, like the one marked out in the figure, is
independent of the size of the gluon k, and only depends on the length of the string segment, i.e. in
particular is proportional to the longitudinal (projection on the q§ direction) size.

The longitudinal size of a string piece corresponding to a meson, with mass m, is Lorentz contracted,
i.e. proportional to m,/E with E being the meson energy. Therefore a gluonic disturbance will only
affect mesons with rapidities y close to the gluon rapidity y, and we conclude that any such disturbance
will fall like exp(—|y — y,|) for |y — y.| = 1. A rapidity range of about 2 units is also the typical one in the
Lund model for hard gluon emission. If one would plot the multiplicity as a function of rapidity, the
multiplicity will increase above the general background (related to the q- and -jets) inside a range of
typically 1 unit in rapidity on each side of the gluon rapidity. The central value will increase and the
half-width of the “bump” will decrease with increasing gluon energy but the “‘range of disturbance” is
independent of energy.

For soft central gluons we obtain essentially that a gluon with transverse momentum k, , and rapidity
y. will affect mesons in the rapidity range (y, y + dy) like

N
k 1g m dy (412)
with N a normalization constant.

The arguments above and also the fact (derived in [11]) that the median production time at rest for a
meson of rest size [ is given by //c, implies that gluons emitted at rapidities more than about a unit apart
will not interfere. If there are several (soft) gluons emitted into a certain angular range, the effect will be
very similar, although the straight string segments of fig. 4.15 will be modified into several broken
segments, i.e. for many soft gluons be “‘rounded off”.

There is a further effect on the final state particle distributions which is not noticeable in fig. 4.15 due
to the particular coordinate system chosen. There will be an obvious recoil effect on the g- and g-particles
from the gluon emission. This recoil will be distributed among the fast particles along the g- and §-directions
in accordance with the fractional energy-momentum, i.e. for the gluon emission discussed above as

—k.gdz ~ -k, dy exp{|y| - ym} @.13)
with y, the maximum rapidity of a meson
VY = In(W/m). 4.14)

Thus the particles in the fragmentation region |y| = y,, are affected by the soft central gluon emission.
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4.5.1. Collinear gluons

It is obvious that the combined effects from (4.12) and (4.13) will imply that the collinear gluon
emission, i.e. y, = y. Will give only minor contributions to the transverse momentum spectra. A Monte
Carlo study has in fact shown that the combined effect of collinear gluon emission and the correspond-
ing recoil of the quark is compensating and the resulting effect so small that it can be neglected given
the general zero-point Gaussian p,-fluctuations in the fragmentation process. This can easily be
understood since, as argued above, both the quark and the collinear gluon will end up in the same
hadron.

The longitudinal distributions are, however, affected by the emission of collinear gluons since they
disturb the formation of fast (i.e. large z) particles and therefore lead to a softening of the z spectra.
The reason for this is that, in our model, large z particles are produced by an early breakup of the
force-field which are suppressed until the energy concentration in the collinear gluon is delivered to the
field and becomes available for particle production.

To see this in more detail we consider fig. 4.15 in which the quark (with momentum p) and antiquark
go apart in opposite directions and the gluon (with momentum 2k) is moving transversely to this
direction. We note that in case 4kp < m§ with m, a (transverse) meson mass, then both the quark and
the gluon will end up in this same final state meson. There will be no disturbance for such a collinear
gluon emission, i.e. expressed in terms of the scaled CM frame variables in eq. (4.8) for

X2>1-m3/W? @.15)

there can be no difference between a 3-jet event and a 2-jet event with only the single quark moving
away.

On the other hand, in case m3 < 4kp, then we will have to wait some time to form a meson with mass
mo from the original quark and an antiquark from a pair produced along the string. To see that, we note
that after the time ¢ the quark carries energy and momentum (p — «t), the string between the quark and
the gluon carries the energy (2«f) and momentum along the quark direction («f) and along the gluon
direction (transverse) (kt). The gluon carries energy and momentum (2(k — «t)). Thus the mass square of
the quark and the quark-gluon segment is 2p«t and if we also include the gluon, the mass square will be
2p(2k — «t). Therefore for small values of # the mass in the quark and the quark-gluon segment of the string
is too small, and if we also include the gluon the mass of that system will be too large to form the meson. It is
not difficult to convince oneself that the largest value of z = z,,., for a meson of mass m, will in that way not
be 1 but

4pk — m3
w=1-E Mo 4.16
Zma = 1= 3 2k (4.16)
Thus, in order to produce a meson with mass m, and an invariant energy-momentum fraction z, no
gluon such that

A-x)1-x)>BA-x)+y(1—-x), y=1-z, B=m}W? 4.17)
should be emitted.

The mean number 7 of such gluons can be computed from eq. (4.8). At this point it may be necessary
to take into account the running coupling constant a,(Q?) and in particular to determine the value of Q?



B. Andersson et al., Parton fragmentation and string dynamics 97

to be used. If we for simplicity assume some effective value of & in the calculation we obtain to leading
order in (1- 2)

S 4 (M
= ?masln(m%)ln(l 7). 4.18)

If on the other hand we use a,(Q?) with

Q%= 4pk = W*(1 - x») (4.19)
we obtain
2 2
A= - 2t (M) In(M3/47) In (%%) In(1- 2). (4.20)

In both cases M, is some mass corresponding to a cutoft for hard gluon emission (cf. the next subsection
or ref. [13]). We note that eq. (4.18) is more cutoff-dependent than eq. (4.20) which exhibits a very slow
dependence upon M. In any case we note that if collinear gluons are emitted in a Poissonian way, then
the main result will be

P=exp-n=(1-2z) 4.21)

where P is the probability that no soft gluon is emitted such that eq. (4.17) is fulfilled and B can be read
off from eq. (4.18) or (4.20). Rather independently of whichever of the two indicated treatments of the
remaining coupling constant that we choose, we obtain for the ordinary vector and pseudoscalar mesons
a value of

B=03-0.5 (4.22)

in the present energy-regime. We note that, although the physical interpretation differs, the numerical
result obtained here is similar to the one obtained e.g. in jet calculus [116].

4.5.2. Soft central gluons

In this subsection we will discuss how all soft gluons emitted in a unit rapidity interval can be
summed to give an effective gluon with a finite p,. It is then assumed that the soft gluon emission is of a
Poissonian nature and that the probability to emit a certain number of gluons as well as their individual
k, are given by first order perturbative QCD. This p, of the efective gluon gives a bump on the 2-jet
colour-field structure and there is also a corresponding recoil for the quark which emitted the soft
gluons.

For the 3-jet events the p, distribution for the leading quark is a smooth function above a certain
cutoff value P, where P is essentially half the invariant mass M,, discussed in section 4.4. Without the
soft gluons the 2-jet events would correspond to a 8-function at p, = 0. The inclusion of the soft gluon
effects implies that the leading quark in a 2-jet event will get a p, so that the hole in the distribution
between 0 and P is filled up. When summing 2- and 3-jet events the p, distribution for the leading
quark is now a smooth function from 0 upwards. The result for the final state hadrons is insensitive to a
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change in the cutoff P. Such a change will only imply that some events are moved from the class of 3-jet
events to the class of 2-jet events, or vice versa. We again note that by using different cuts one can get
somewhat different fractions of 3-jet events, although the fraction of events with a visible 3-jet structure
is the same.

To obtain a quantitative treatment of the p, effects due to soft gluon emission we first have to make
a precise division of soft and hard gluons. Using the scaled energy variables, defined in connection with
the cross section formula eq. (4.8), it can be shown [13] that the situations when there is at least one
meson related to the emitted gluon (i.e. true hard gluon emission) can be disentangled by the
requirements

x=1-2y, i=1,2 (4.23a)

A=-x)(=—x)>y(x+x—-1) (4.23b)
with y defined by

y=(My/Wy, M;=25GeV. (4.24)

The requirements in (4.23a) are usually referred to as “thrust-cuts” on collinear gluons while (4.23b)
defines a situation in which a centrally (in phase-space) emitted gluon is hard enough to permit related
particle production. It should be understood that the requirements in (4.23) are “theoretical” conditions
based on properties of the Lund model. Many of the events which in that way are classified as 3-jet
events are experimentally indistinguishable from 2-jet events. The experimentally observable rate of
3-jet events (which correspond to a scale M, =5 GeV/c?) on the 10-20% level at 30 GeV [50, 53] is,
however, the same.
Let us introduce the variables

1-x)(1-x, _1 (1-x
k = W\/ —l——)xl o y 2ln<——-—1_ x2> 4.25)

where k is the transverse momentum of the gluon in the Lorentz frame shown in fig. 4.15. For soft
central gluons (with x; =1, x,=1) k and y are also the transverse momentum and rapidity of the gluon
in the CM frame with regard to the direction defined by the quark and the antiquark. Expressed in
these variables the cross section (4.8) takes the form

1 do 4o, 1xitx}, ~ﬁas Cox=1
wdCdy 3nRntnt TITE ne1 (4.26)

True hard gluons have k > M, and collinear gluons correspond to

4y e®
2 _____—
k< M3 T-2y-2y¢ 4.27

The remaining region consists of soft central gluons as illustrated in fig. 4.16. An effective maximum
rapidity for soft gluons is given by k*= M3 in (4.27). Hence the soft gluon region is approximately
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k

Fig. 4.16. The phase-space boundary curves separating true hard gluon emission (I), collinear gluon emission (II) and soft central gluon emission
(III). The exponentiallike curve is given by (4.27) with an asymptote represented by the dotted line.

described by

|y|s%ln<l—;—)’2—7>~%ln(€%), k<M,. 4.28)

The QCD result in (4.26) for soft central gluons can then be formulated as

dn
dk ., dy, de

as
2

_2a 1
37 k3,

(4.29)

with ¢ the azimuthal angle. The quantity di in (4.29) corresponds to the mean number of gluons
emitted. Since the quark hardly loses any energy when a soft gluon is radiated, the probability for this
bremsstrahlung is independent of if one or more soft gluons has already been emitted. This
makes it reasonable to assume, in accordance with [54], that this can be considered ‘as a Poissonian
process. Then the probability to obtain a resulting p, from many increments k, each determined by a
Poissonian emission governed by da is given by [54, 55]

ddz—PL = (ZLw)z J d?b expfib -pl}exp{—J dn (1 —exp(ik. - b))} (4.30)

where N is a normalization constant, depending upon the allowed k, and y-range.

As noted above the p, effects from collinear gluon emission on the final state particles can be
neglected. For soft central gluon emission, where the available phase-space is defined by eq. (4.28), the
effect is twofold. According to egs. (4.12) and (4.13) we expect a p,-bump in the rapidity neighbourhood
of the gluon and a corresponding recoil in the fragmentation region with negligible interference. As
discussed above, however, it is reasonable that neighbouring soft gluons will interfere to give a
combined effect which, given the size of the rapidity neighbourhood, can be computed from eq. (4.30).

Because a gluon gives a transverse momentum to a piece of the linear colour-field, which is localized
within about one unit of rapidity, all gluons within a rapidity range Ay ~1 can be summed to one
effective gluon. The p, of this effective gluon is shared among the hadrons in the rapidity neighbour-
hood according to eq. (4.12). We obtain for the mean number of soft gluons emitted inside the range Ay
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_dn 2 2a,
T %5 Ay k2 o(M3—k2,). (4.31)
The upper limits on the k, -integrals imply that a good approximation for the combined effect
according to the integral in (4.30) is

dP _ 1
d2p 271. p2—aMa

6(M*-pl); a= 3:_ asAy. (4.32)

The quantity M is a mass with the size of order M, representing the boundary for soft central gluons,
at which the cross section should join smoothly to the hard gluon cross section. The normalization

d
2pl

Pp. =1 (4.33)

implies that the soft gluons emitted within a rapidity range Ay of the order of 1 unit have been summed
up to one effective gluon with a combined p, such that p3 < M2 The exact value used for M is not
critical. A change in M will essentially only correspond to a reshuffling between gluons considered as
hard and as soft.

The validity of the approximation (4.32) to the expression (4.30) has been checked numerically [56].
In fig. 4.17 we show the behaviour of (4.30) normalized to (4.32) without the @ function. For relevant
a,- Ay = 0.2 the deviation from (4.32) is noticeable only for 0.9<p,/M <1.1.

For the recoils given to the leading quark and antiquark we have to sum the effects of all the effective
gluons corresponding to different rapidity bins. This can also be obtained from eq. (4.30) by treating the
whole rapidity range. The rapidity range to include in the calculation depends on the specific process
being studied. We note here a difference between e*e™ annihilation and leptoproduction on the one
hand and Drell-Yan production on the other hand. In the latter process the recoil from the gluon
emission is taken by the muon pair which is unaffected by the confining force. Thus, in that case one has
to add the effects from gluons in the whole kinematically allowed rapidity range. For Drell-Yan this will
give results [54, 55] for the integral in eq. (4.30) which differ rather essentially from ours due to the
phase-space considerations discussed above. If, as in the Drell-Yan process, the integral in eq. (4.30) is
performed over the whole kinematically allowed rapidity range of the gluons, similarly as in connection
with the infrared problems in QED, one obtains results like

da 2o, 1 w?
&k, 37°k3, l“( L,;)' (4.34)

In QED the resolution of the infrared problems is related to the experimental resolving power (soft
photon emission is in principle always detectable by a sufficiently fine-grained and distant detector), but
due to confinement they are in QCD related to a nonvanishing hadronic mass scale. So the treatment of
soft emission should be rather different in the two theories.

As we have shown above the size of the rapidity phase-space, inside which gluon emission gives
transverse momentum effects noticeable from the zero-point fluctuations, is in our model (and for the
processes we consider)
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Fig. 4.17. The p, spectrum obtained in one Ay interval from (4.30) with upper k_ cutoff M, normalized to the expression in (4.32) (neglecting the 6
function). The resulting functions are shown for three values of as- Ay: 0.2 (full) 0.5 (dashed) and 1 (dotted).

0

AYmax = In(W?/6M3) 4.35)

independently of k,, < M,.

The treatment of soft gluon emission can then be summarized as follows: the emitted soft gluons,
given by first order perturbative QCD, are in each rapidity bin summed to give an effective gluon with a
finite p,. This gives a bump on the 2-jet colour flux tube in such a way that the p, is shared by the
hadrons in the rapidity neighbourhood of the effective gluon according to eq. (4.12). The corresponding
recoil is taken up by the leading quark (or antiquark). Hence, one obtains a distribution of hadrons with
p.-bumps in the central region and a corresponding recoil in the fragmentation region.

In a study of the effects of soft gluon emission on the event structure in e*e” annihilation it was
found [56] that for central (in rapidity) hadrons the main result is an increase in the effective Gaussian
width in p, from =0.35 to =0.42 GeV/c. The non-Gaussian nature of the soft gluon contribution is thus
effectively masked by the p, from the tunneling process, from particle decays and from true hard
gluons. The recoil effect on the hadrons in the fragmentation region makes the two jets not completely
back-to-back. Since the original jet-axis is not known in e*e” annihilation it is not meaningful to specify
exactly how the recoil is shared between the two sides. The total recoil from soft gluons is ap-
proximately 800 MeV/c at PETRA energies. The shape of the recoil p, distribution is of an almost
Gaussian character, with significant deviations only at small p,. It is worth noting that the resulting
change in the event structure is not all that different from the one obtained with the Field~-Feynman
recipe [7] of giving also the primary quarks a p, with respect to the jet-direction.

One may note, however, that there is a difference between e"e” annihilation and leptoproduction
concerning the recoil effect. In the e*e™ case the gluon cannot unambiguously be associated to the
quark or the antiquark, whereas in leptoproduction the p, recoil is always taken by the struck quark.
Therefore, if p, is measured with respect to the current direction, the p, recoil is carried by the leading
quark in the current fragmentation region and not by the target remnants (even if the gluon is emitted
backwards in the hadronic CM frame). We will, in section 4.6.2, see that this will lead to interesting and
observable consequences.
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We have distinguished the gluons into three classes: true hard gluons, collinear gluons and central
soft gluons. For convenience different schemes have been used to represent the efects of these different
gluons, but there is no basic difference. In fact, at the price of a considerably more complicated scheme
it is possible to simulate the fragmentation of a string which, on a statistical basis, will break either
before or after a gluon has lost its energy (see fig. 4.15), with increasing probability for the former if the
gluon energy becomes large.

4.6. Comparison with experimental results

Of course, the ultimate test of the different aspects of the hadronization models is to confront them
with experimental results. To investigate perturbative QCD, which describes the gluon emission at the
parton level, it is also very essential to have a realistic model for the transition to the observable hadron
level. This is particularly true at the currently available energies, since effects arising in the hadroniza-
tion process may often be dominating. In fact, the parton level characteristics are in some cases
completely washed out, as will be shown below.

To investigate the features of the gluon emission the transverse properties of the final state particles
is the most revealing point. We have already seen, in section 4.3, that the general event structure,
arising due to the fact that the string is stretched via the gluon, compares favourably with data. We will,
in this subsection, start with a few comparisons with e*e” annihilation data and then make a more
complete study of p, properties in deep inelastic muon—proton scattering at high energies. This latter
process has the advantage that the virtual photon defines an event-axis, the current direction, which
gives the longitudinal direction whereas in e"e” annihilation this axis must be reconstructed from the
measured hadron momenta, which necessarily introduces some uncertainties. In leptoproduction there
is on the other hand another contributing source to the final p, of a particle, namely the primordial
motion within the target proton, which makes the situation both more complex but also more
interesting. The gluon jets that occur in high p, hadron-hadron scattering can also be described with
this model but the string structure and colour flow properties are more complicated and will be
discussed in section 6.

The features of quark and gluon-jet fragmentation discussed in this paper are all built into the Lund
Monte Carlo for jet fragmentation {13], which provides general routines to fragment a specified system
of partons. This initial (from a fragmentation point of view) partonic system is then calculated in
different programs that use the cross section formulae for the initial interactions, such as e’e”
annihilation [57], leptoproduction [58] and high p, hadronic reactions [59].

4.6.1. Gluon effects in electron—positron annihilation

The jet structure in e*e” annihilation has been analyzed in great detail in many publications and a
number of measures of this structure has been used, like planarity, sphericity, thrust etc. Since there
exist several reviews on this subject, e.g. [60], we will not go into a detailed discussion here, but rather
show a few illustrative examples. Some observables are not sensitive to the differences in different
fragmentation models. The planar event structure as shown by the charged particle p, distributions
within and out of the event plane (defined by the momentum tensor =, p7p?) can be reasonably well
represented by the results of both the Hoyer [45] and Lund [13] Monte Carlo programs, see fig. 4.18
obtained from the CELLO analysis [61] of 34 GeV data. The thrust distributions in the two models are
compared with the experimental distribution in fig. 4.19. In other types of analyses different hadroniza-
tion models will give different results, as e.g. discussed in section 4.3 in relation to the asymmetry
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Fig. 4.18. Charged particle p, distributions within (a) and out of (b) the event plane. Data from the CELLO Collaboration [61] are compared with
the Hoyer et al. (HM) and Lund (LM) models.
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Fig. 4.19. Thrust distribution. Notation as in fig. 4.18.

observed by the JADE group. However, the fact that also observables constructed to be “fragmentation
independent” are more sensitive to the hadronization than originally expected, is illustrated by the
recent attempts to determine a,, which we now want to comment.

Given that QCD is the correct theory of the strong interactions, which now seems probable, it is of
course interesting to determine the one free parameter of the theory, the running coupling constant a,
or, equivalently, the A parameter appearing in the expression for a,. Now, a; is (at least at present) only
related to the perturbative expansion at high Q?, while we know that the soft, nonperturbative,
fragmentation effects have a major influence on the shape of the hadronic final state. It is therefore
difficult to determine &, without some reference to an explicit model for the fragmentation. Customarily
the Hoyer et al. [45] or Ali et al. [46] Monte Carlos have been used for such determinations from e*e”
data. In a recent CELLO publication [61] it is shown that if the Lund model is used instead, an a, about
50% higher than in the Hoyer model is necessary in order to fit the data, i.e. typically a, = 0.25 rather
than 0.17 (for W around 33 GeV). The other groups at PETRA have since made similar, preliminary
observations. What is then the reason for this discrepancy between the models? Actually there is not
one single cause, but a number of contributing factors, of varying importance in different methods to
determine «,. Most important is our assumption that the colour field is stretched from the quark via the
gluon to the antiquark in a 3-jet event, as discussed above, while in the Hoyer and Ali models the jets
are allowed to fragment independently of each other in the CM frame. The resulting difference can be
illustrated e.g. for energy—energy correlations, as follows.

Experimentally one can define an energy—energy correlation function 3(6)

Zexp(0)= N 2 2——1-6(0 6;) (4.36)

event eyents i>j
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where the inner sum runs over all particle pairs i, j in an event, with 6; the angle between the two
particles (and the & function smeared out by the use of some bin size in ). On the parton level,

_ 1 20, x5 {xlxz _ X1X3 500 _ XaXs g0
Sranen(®) = 7 f 0 003 2 2B TR 5(0 - 0) + 42 5(0 - ) + 2252 500 023)}

4.37)

which can be explicitly evaluated [62]. This 3paron(6) is finite for 6# 0, # 7 and, neglecting O(as)
corrections to o, directly proportional to a,. Since fragmentation effects are considerable, both from
two- and three-jet events, 3., cannot be equated with 3 ..o to yield a,. However, when the
difference

A3(6)= 3 (- 6)— 3(8) (4.38)

is formed, all fragmentation effects symmetric around @ = #/2 vanish. If jets fragment independently of
each other, then the particles in a jet will be symmetrically smeared around the parton-axis, and
fragmentation effects will indeed be rather small. Thus A3 anon(8) = ASxp(#) and a; may be determined
straightforwardly. This conclusion is almost independent of whether the gluon is hard or soft, i.e.
allowed to fragment like a quark or to fragment considerably softer. More precisely, fragmentation
effects will reduce the observable AY by a factor 1.1-1.2 compared to the parton level A3 (for
7/5 < 0 <2#/5). (But note that e.g. a naive use of thrust cuts in a Monte Carlo simulation of the matrix
element may in itself introduce large errors, which actually increase the observable A3 [63].)

In the Lund model, however, particles in a three-jet event are not smeared symmetrically;
low-momentum particles will preferentially lie in the q-g and g—q angular regions. This enhances the
probability to find two particles with small relative angle and decreases the probability for large relative
angle. Thus fragmentation effects reduce AY by just about a factor 2 at present energies (see [64] for
comments on the energy dependence), which has to be compensated by starting out with a higher a; on the
matrix element level. The CELLO result is shown in fig. 4.20, while the fact that this fragmentation effect is
associated with the behaviour of low energy particles is illustrated in fig. 4.21. A Montvay type of scheme
[47] (see section 4.1) will essentially interpolate between the Lund and the independent jet cases, for k, =
fragmentation reduces A% a factor =1.4, for x, = 1.5« a factor ~1.65.

Another way to determine «, is to count the number of three-jet events, either identified with the use
of some cluster algorithm or by making suitable cuts on thrust, oblateness, sphericity or some other
variable. In this case fragmentation effects are always large, and an analysis along these lines must be
based on comparisons with Monte Carlo results. Again the string picture has clear implications: if e.g.
the g-g angle is reasonably small, the breakup of the intervening string will give a number of low to
medium energy particles lying between the two jets, so that experimentally one would tend to
reconstruct - and g-axes that are somewhat shifted towards each other (fig. 4.22). Thus three-jet events
“look more two-jetlike” [S0] in the Lund model than in an independent fragmentation scheme, and a
higher «, is needed to account for a given amount of observable three-jet events.

Since this “hyperbola effect” is associated with low-momentum particles, it will be less important for
event measures that depend more on the high-momentum particles. This is illustrated in fig. 4.23, where
we show the effects of using measures linear or quadratic in momentum, and of cutting away all
particles below some given momentum.

The price to be paid for putting more emphasis on high-momentum particles, however, is to
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Fig. 4.21. The asymmetry in the interval #/5< 8 <2#/5, plotted ac-
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Lund model and dashed for independent fragmentation, give the total
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Fig. 4.22. Blowup of the central region of a q4g event, schematically
illustrating how the fragmentation of the strings give particles between
the jets, so that reconstructed parton-axes, dashed, deviate from the
true parton directions, full, to give more two-jetlike events.
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Lund scheme and a scheme where jets fragment independently (but are reconstructed if the gluon fragmentation is hard, dashed line, or
with the same kind of gluon jet as in the Lund model and the same soft, dashed-dotted line.

as). The full curve corresponds to using the sphericity measure, the
dashed to a “linear sphericity” measure ((Z pipis/p:)/Z pi is diagonal-
ized rather than = p,pie/Z p? [65]). The values at X = 0 correspond
to using all particles in the analysis, while nonzero xmi, means that all
particles with p < xpmi, W/2 have been cut away.

introduce a very strong dependence on the gluon fragmentation function. If the gluon jet is very much
soften than a quark jet then the sphericity axis is essentially only determined by the q and § directions,
and a lower S value will be obtained than for a hard gluon (fig. 4.24). While the gluon fragmentation is
simply related to the quark fragmentation in the Lund model, it is completely arbitrary in an
independent fragmentation framework. Actually, both the Hoyer and Ali gluon jets, though softer than
quark jets, are harder than a Lund gluon jet. Typically this effect may require an a, 20-30% higher in
the Lund model to obtain the same number of three-jet events.

Also a number of other factors may play a rble in the determination of a.. So far we have only
considered first order QCD, but in second order also events of the type qggg and qdqq enter, events
which no longer need to be planar. If only first order QCD is used then an abnormally large a, (and/or
fragmentation p,) is required to fit the out-of-plane momentum spectra. Then more technical
differences between the Monte Carlo programs may enter, e.g. the schemes used in the Hoyer and Ali
programs to ensure conservation of total energy and momentum, to give different shifts in «,. Indeed
the JADE group finds that for suitably defined cluster thrusts, where dependence on gluon frag-
mentation functions and momenta out of the plane are reduced, a, will come out rather similar in the
different models [65].

Thus the early expectation, that perturbative QCD and fragmentation effects could be studied
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essentially independent of each other, is lost. In the end, our hope is that further studies not only will
yield a single number «,, but also essential information on the fragmentation properties.

4.6.2. Gluon effects in lepton-nucleon scattering

In leptoproduction the “ordinary” type of event is of a 2-jet nature, when viewed in the hadronic CM
frame. The forward jet is the quark (or antiquark) which was “kicked out” of the proton by the current.
The backward moving jet is the left-over target remnant, which is (usually) a diquark. (We will call this
type of event a g-jet event.) From the point of view of colour properties, this diquark is an antitriplet
and it will span the same kind of colour flux tube as discussed before. If one does not study the particles
in the target fragmentation region one can, as a first approximation, let this diquark be represented by
an antiquark, which has the same colour representation. In a more complete study, however, the
structure of the diquark has to be taken into account. In the Lund model we have done this as described
in section 5.2. The essential feature is that the diquark is assumed to stretch the colour field in a
stepwise manner, resulting in a colour flux tube similar to the one in the current fragmentation region.
This flux tube is cut into pieces by the production of quark-antiquark pairs as usual. The first rank
particle can contain either one or both of the initial quarks, thus forming either a meson or a baryon. If
a meson is formed first a baryon will be produced in a later step. This splitting of the diquark occurs in
about 40% of the cases.

In perturbative QCD there are, to first order in a,, two dynamically different 3-jet situations. In the
first the quark (or antiquark) radiates off a gluon (fig. 4.25a) and in the second a gluon is split into a
quark-antiquark pair (fig. 4.25b). We will call these qg events and qq events respectively. The cross
sections for these processes can be found in e.g. [66, 67]. In order to evaluate the cross sections it is
necessary to make use of the structure functions for the proton constituents. We have mostly used the
parametrizations by Gliick, Hoffmann and Reya [68]. Several other parametrizations exist, e.g. those in
[69], but in general the results do not depend on the particular choice of parametrizations, unless e.g.
the softness of the gluon distribution is changed drastically.

A very important point is, of course, that the partons in the jet system should join to form one, or
more, colour singlet systems. In the g-jet events there will, of course, only be a simple 2-jet colour flux
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Fig. 4.25. Feynman diagrams giving the correction to order as to the pointlike quark-current cross section. The current is denoted by a wavy line,
the gluon by a spiralling line and the quarks by straight lines.
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tube and in the qg-jet event the string will be spanned from the leading quark via the radiated gluon
back to the target diquark in a similar way as in €*e” annihilation events. In the qg-jet events on the
other hand, both the produced quark and antiquark will each drag out a string from the target remnant
which is in a colour octet state (similar to a gluon) and contains the proton valence quarks. We treat this
somewhat more complicated target remnant by dividing it into a diquark to form a colour singlet system
together with the produced quark, and a quark to form a colour singlet system together with the
produced antiquark. In our calculations the energy-momentum of the target jet is shared so that the
diquark in the mean takes two thirds and the quark one third. In this way two separate colour singlet
2-jet systems are produced in this type of qd events.

Based on these ingredients (i.e. the differential cross section to choose kinematical variables, proton
structure functions, QCD matrix elements and the Lund fragmentation model) a Monte Carlo computer
program has been developed [58] and used to study high-energy leptoproduction in general {70} and
transverse momentum properties in particular [70, 71]. (Also baryon production has been studied [72].)

The gluon radiation process gives the dominating contribution to the 3-jet events for the larger
values of xg. It is also interesting to note that the probability for these events essentially only depends
on the total hadronic CM frame energy W for xp > 0.15. However, since the xg distribution is peaked at
small values one must also take the xz dependence into account when comparing with data. The energy
partition between the jets is uneven so that the gluon has in the mean about half the energy of the quark jet.

The relative cross section for the qq events is a complicated function of both W and xg and they
dominate over the qg events at low xg-values due to the fact that the gluon structure function is very
peaked at these values. Usually the energy is very unevenly shared between the two jets, one being very
soft as compared to the other (the ratio is in the mean about 1:6). The percentages of the two types of
3-jet events (defined by the cuts in eq. (4.11)) as a function of W is shown in fig. 4.26.

To make a detailed study of the p, properties of the final state hadrons one needs to take the
following sources into account:

1. Transverse motions within the target-nucleon, called primordial transverse momentum k,, of the
parton struck by the current. This is taken into account by letting the jet-axis “swing” around the
current direction Q with a Gaussian k. distribution.

2. The first order QCD 3-jet events, that occur at a rate given by «, give the partons a p, which
essentially depends on the total hadronic mass W [66].

3. The soft gluon emission gives central p, “bumps” and a recoil tc the leading quark, as discussed
above.

(e);
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Fig. 4.26. Percentage of qg events (full line) and qq events (dashed line) as a function of W for 280 GeV up scattering with x = 0.05 (a) and x = 0.1
(b).



110 B. Andersson et al., Parton fragmentation and string dynamics

4. The Gaussian p, distribution ((p3)= 0.2 GeV?/c®) of the qg-pairs produced in the soft frag-
mentation process.

5. Decays of unstable particles.

If all but the soft gluon contribution are taken into account, many of the observable features can be
well reproduced [70, 73, 74]. It is, however, necessary to use a primordial k, which is too large to be
understood as a pure Fermi motion within the target-proton. Furthermore, different values of k, are
needed when different physical quantities are studied. To reproduce single particle p, spectra, a larger
k. was needed than when reproducing collective p, properties in an event, such as sums of p, or energy
flow [73, 74]. When the soft gluon effects are included we find [71] that the same value can be used to
represent both kinds of data. We have then chosen a Gaussian k, distribution having the same width as
for the fragmentation p,, i.e. (k3)=(0.44 GeV/c)* or (k,)=300MeV/c, which can very well be
interpreted as a Fermi motion.

The results we show in this subsection are obtained from the simulation of 280 GeV muon-proton
scattering events and imposing cuts on the kinematical variables, 20 < » <260 GeV, W?> 40 GeV? and
Q?>5GeV?. These cuts are similar to those used by the European Muon Collaboration, whose data we
use for comparison.

According to QCD at the parton level the mean p3 should increase essentially linearly with W? [66)].
In fig. 4.27 the resulting W? dependence in our model is compared with experimental data [75, 76]. It is

P EMC BEBC
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10- e (02<1<04 ©O
2
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Fig.4.27. The mean-squared transverse momentum for different z-bins is shown as a function of the squared CM frame hadron energy W2 together with
data from EMC [75] and ABCDLOS {76]. The full lines include soft gluon emission and have (k%) = (0.44 GeV/c). For comparison our old curves
(dashed) not including soft gluons and with (k%)= (0.8 GeV/cY are also included.
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clearly favourable to include the soft gluon effects both to improve the agreement with data and to
avoid an unphysically large primordial k.

The planar structure of the events, due to the occurrence of QCD 3-jet events, is clearly shown in the
distributions of the transverse momenta in and out of a determined event plane, fig. 4.28. A single
quark-jet, whether “slim” or “fat” cannot describe the data [73].

Since the 3-jet events have larger transverse momenta than the ordinary g-jet events, a simple way to
get an enriched sample of 3-jet events for QCD studies is to use a single particle p, trigger condition. In
case one triggers on a particle with z>0.1 and p, >1.25GeV/c the number of 3-jet events will be
around 70% instead of 22% without any trigger [70]. This fact has been used by EMC for the energy
flow diagrams of fig. 4.29 to clearly show the jet structure in the forward hemisphere of the hadronic
CM frame. For more details we refer to EMC’s study [73], but the model curves shown here are
somewhat improved by the inclusion of the soft gluon effects.

The contributions to the total p, from the different sources mentioned above are shown as a function
of the hadron fractional energy, z = E, /v, in fig. 4.30. The p, for the leading quark will result in a p, for
a fast hadron which is proportional to its energy fraction z. If the soft gluon contribution (IV) is
neglected the primordial k, contribution (III) has to be increased to roughly replace curve IV. Hence,
the p, of a high-z particle gets a large contribution either from soft gluon emission or primordial k,. To
differentiate between these two possibilities and test the soft gluon effects more directly, we have
suggested [71] a study of the p, balance of a trigger particle with high z. As mentioned above, the main
difference between the primordial k, and the soft gluon effect is that in the first case the p, is balanced
in the target fragmentation region while in the second case it is balanced in the central plateau. This is
seen in fig. 4.31 which shows how the p, compensation by the remaining particles in the event is
distributed in pseudorapidity. There is a clear difference in the target fragmentation region which can be
studied in the new generation of muon experiments. Due to the large number of particles in the central

Up 280 Gev

% dN/d}.‘pi w (GeV™2)
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Fig. 4.28. Distribations of X piiy and £ pi.u obtained by EMC {73] (events with =4 charged hadrons with pi = 6 GeV). Full line: Lund mode!

including soft gluon emission effects. Dashed line: single quark-jet fragmentation, ¢, =310MeV. Dashed-dotted line: single quark-jet frag-
mentation, g, = 470 MeV.
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Fig. 4.29. Scaled angular energy flow d3/dy obtained by EMC [73]. Full line: Lund mode! including soft gluon emission effects. Dashed line: single
quark jet fragmentation, o, = 470 MeV. (a) all events having =4 charged hadrons with piy =6 GeV, (b) subsample with =1 charged hadron with
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Fig. 4.30. The mean squared transverse momentum as a function of
z% The curves show the contribution from: (I} the fragmentation
process as described by our cascade model, (II) first order QCD
processes, (II[) primordial transverse momentum, (k%)=
(0.44 GeV/cy, (IV) soft giuons, (V) our model when all contributions
are included. Tt should be noted that the p, broadening coming from
the decay of unstable particles is included in each of the curves, and
hence there is some double counting between I, I1, III and IV. In fact,
the p; broadening coming from decays is a minor effect, but decays
must be included to give the correct z spectrum. The data points are
from EMC [75].
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Fig. 431. The compensation of the transverse momentum of a fast
trigger particle, having z > 0.5, by the remaining particles in the event
as a function of pseudorapidity in the lab system. p, is measured in a
plane spanned by the trigger particle and the virtual photon. A true
primordial k, is compensated in the target fragmentation region
(dashed line), whereas for soft gluons it is compensated in the centrat
plateau (full line). The mean k, for the two cases are (k})=
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region it is possible to get a precise value for the mean p, in this region to test this idea even if the
target region is not observable. This has been done using EMC data with the result [77] as shown in fig.
4.32. Even if only the forward hemisphere is observable the data clearly favour the soft gluon option.
(The drop of the data at y* =0 is due to the applied momentum cut py, = 6 GeV/c.)

In order to test perturbative QCD there has been a great interest in properties which are insensitive
to the hadronization process. The angular energy flow

1 d%¥ _ 1 ( _do(z0)
S q(cos 8)  or) Z 3z d(cos ) (4.39)

would have this property if the p, effects arising in the hadronization were sufficiently small to be
neglected. It has been shown [78] that QCD gives a characteristic forward-backward asymmetry at the
parton level, due to the fact that a radiated gluon is more likely to go along the emitting current quark
than along the target jet. Since the amount of 3-jet events is proportional to a; it has furthermore been
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Fig. 4.32. EMCresults [77] for the distribution of the transverse momentum flow p'f® of a trigger particle with z > 0.5 (open symbols) and the balancing
al

component p% of further particles in the event as a function of rapidity in the CM frame. The full line is the result of the Lund model including soft gluon
emission and a small primordial k,. The dashed line is obtained from the model when soft gluon effects are neglected but a large k, is used,

{k%)=0.74 GeV2.
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suggested that this energy flow could, in particular, be used to measure «, in leptoproduction
experiments. We have, however, in- [71] shown that the corrections from the hadronization are,
unfortunately, very large at presently available energies.

The dashed curve in fig. 4.33 exhibits the resulting angular distribution of energy flow at the parton
level for the 3-jet events in 280 GeV muon-proton scattering. The dip around cos 8 = —0.8 is not due to
the QCD matrix elements, but a result of the specific cuts in the string model applied at these relatively
low energies. The dash-dotted curve shows the parton level result for a model with independently
fragmenting jets using a cut procedure a la Sterman and Weinberg, i.e. to require for a bona fide 3-jet
event that a certain energy is outside a given double cone around the current direction. To study the
influence of the hadronization process we first consider only the decay of unstable particles, e.g. vector
mesons. Therefore, we assume that there is neither any primordial transverse momentum nor any p,
introduced in the primary fragmentation process, i.e. in the breakup of the colour field. The resulting
energy flow is shown by the dotted curve in fig. 4.33 (soft gluons are neglected here and the diquark in
the target fragmentation jet is approximated by an antiquark). The QCD asymmetry is washed out and
we notice that the energy flow is also much larger in this case and conclude that the effect is due to the
fact that also some 2-jet events can produce particles at large angles to the current direction. The large
number of 2-jet events will then completely mask the asymmetry that was produced by the 3-jet events.
When the primordial and fragmentation transverse momenta are also taken into account (the former
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Fig. 4.33. Differential angular energy flow obtained by the Lund model for 280 GeV muon—proton interactions with cuts Q? > 5 GeV?, W2>5GeV?
and 20 < v <260 GeV. The dashed curve is at the parton level, the dotted/full line is at the particle level excluding/including primordial and
fragmentation transverse momentum. The dash-dotted line is the result at the parton level for a model with jets fragmenting independently of each
other. At the particle level this model gives the same result as the Lund model.
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only gives a very small effect) the result is given by the full line in fig. 4.33. The “independent jet”
model gives the same curves on the hadronic level. When using different cuts the resulting energy flow
at the parton level might vary somewhat. Very weak cuts will produce jet configurations that are not
possible to project onto physical final states due to mass effects. Hence, the same distributions emerge
at the particle level.

Let us as a convenient and sensitive measure of the forward-backward asymmetry define

_E@)-E(mr-6)

A=E@)TE(r—0)

0°< 6 < 90° (4.40)

where E is the energy flow at the angle @ in the hadronic CM frame. The dotted lines in fig. 4.34 show
this asymmetry when the only source of asymmetry is hard QCD corrections as discussed so far. It is
clear, however, that some forward-backward asymmetry will also appear when taking into account that
the leading quark can radiate soft gluons and thereby obtain a recoil, as discussed above. The size of
this effect when added to the hard processes is shown by the dashed lines in fig. 4.34.
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Fig. 4.34. The forward-backward energy flow asymmetry, as defined in (4.40), in the hadronic CM frame at the parton level (a) and particle level (b). The
dotted lines give the result of hard QCD processes to first order, dashed lines also include effects from soft gluon emission. The full line shows the resulting
asymmetry when the production of a baryon in the target fragmentation jet is also taken into account. The simulated events have the same kinematical
constraints as in fig. 4.33.
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In our study it turns out, however, that the dominating part of the observable asymmetry arises from
the necessity to produce a baryon in the target fragmentation region. This introduces an asymmetry
between the forward and the backward jet which cannot be calculated from basic principles, but can be
estimated by the diquark jet model based on experimental observations. The result, which is given by
the full line in fig. 4.34b, is essentially caused by the fact that a leading baryon, in general, takes a larger
fraction of the jet energy than a meson does. This larger energy fraction is partly due to pure mass
effects but depends also on the model for diquark fragmentation and is enhanced by the different
behaviour in the decay of unstable baryons and mesons. For a more detailed discussion we refer to [71].

By using trigger conditions, like the p, trigger mentioned above, it is possible to get a sample of
events with an increased fraction of 3-jet events which will show the QCD properties more clearly. The
assumed hadronization independence of the energy flow is, however, lost by requiring a specific particle
property. In [71] we show the result of the energy flow asymmetry using such a p, trigger and also
indicate the energy dependence of the asymmetry.

4.7. Onium decays into gluons

For heavy onium states (J*“=1"" resonances) the dominant decay mode is expected to be the
three-gluon decay. In these decays we expect the string pieces between the gluons to form an expanding
triangle with the gluons at the corners, fig. 4.35. Even if the matrix element for the decay [79] does not
have the kind of singularities encountered in e.g. the qdg matrix element, cuts are still necessary in
order to make it possible for the system to fragment. In case a three-gluon configuration fails to fulfill
the cuts, there is still a definite three-gluon colour structure, but two gluons lie so close that they
effectively give a single, somewhat broader jet. Hence we can, in this case, allow the ggg system to
fragment as a two-gluon system [57]. Unfortunately, this procedure is not suitable for Y decays since,
with the usual cuts, all three-gluon decays are reduced to gg events, in disagreement with experimental
data. For toponium (and beyond) there are, however, no such problems with this kind of model.

/

\

/

Fig. 4.35. For the three-gluon decay of a heavy onium state, like upsilon and toponium, a triangular shape of a closed string is expected. The three
kink-singularities at the corners carry the energy-momentum of the gluons.

5. Hadron fragmentation in hadronic collisions and DIS

If we study the distribution in xg of all particles (both baryons and mesons) in the following cases:
(1) quark fragmentation in €*e” annihilation and leptoproduction (DIS)

(2) meson fragmentation in hadronic collisions

(3) proton fragmentation in hadronic collisions

(4) proton fragmentation in DIS (diquark fragmentation)
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we observe a very large similarity. It is therefore tempting to assume a common underlying production
mechanism — that particles in all cases are produced in a stretched-out colour triplet field.

In sections 5.1 and 5.2 we discuss a reaction mechanism which leads to an essentially linear colour
field in the fragmentation regions, and in section 5.3 we show how this is also obtained in a string
picture in which e.g. a baryon is treated as three quarks connected by a Y-shaped string. Perhaps the

strongest evidence in favour of this picture is the observed polarization of ¥~ particles, as will be
discussed in section S5.6.

5.1. Meson fragmentation

The resemblance between (1) and (2) was noted in ref. [80]. The fragmentation of a meson in an
ordinary low-p, (nondiffractive) hadronic collision looks very much like the average of the frag-
mentation of its constituent quarks. Thus we have e.g. for 7 fragmenting into hadron h:

2 (7 > h) =} (D(u~h)+ D@~ h)). D

(Here o denotes the inelastic nondiffractive cross section.) This has been called the fragmentation
model, and some comparisons between early data are shown in fig. 5.1.

A possible reaction mechanism which reproduces this property is pictured in fig. 5.3 [81]. The colour
of a quark is, due to asymptotic freedom, not well localized, but rather distributed like a blob around

the quark. A meson can be imagined as two blobs confined in a bag as in fig. 5.2. It is thus e.g. red in
one end, antired in the other, and “white” in the middle.
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Fig. 5.1. The distributions (z/m) do/dz for #* —» #*, #~ and K~. @: data for #*p—hX from ref. [82], for #* > #*, the diffractive peak is subtracted.
x: predictions according to eq. (5.1) with quark fragmentation functions from refs. [14, 83} and o = 18.0 mb.
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/1] red
\\\\ antired

Fig. 5.2. The colour of a quark is, due to asymptotic freedom, not well localized, but rather distributed like a blob around the quark. A meson can
be imagined as two blobs confined in a bag as shown in the figure. It is thus, e.g., red in one end. antired in the other, and “white” in the middle.

W “white”

In fig. 5.3 we show two meson bags approaching each other. (They are Lorentz contracted.) If the
coloured parts overlap, the two bags can unite to form one larger bag. This bag is stretched to a colour
flux tube as in fig. 5.3. The bag pressure, or alternatively the force in the stringlike colour force-field,
retards the meson remnants. As seen in fig. 5.3 the colliding “blob” will lose its momentum first, and
when it is stopped, the other blob will be retarded. The bag is thus stretched to the same length as if all
the energy were carried by one of the valence quarks. Although the dynamics is very different, when the
energy in the colour field is divided into final state hadrons we obtain essentially the same result as for a
quark jet, with one of the original valence quarks in the first rank meson.

In this picture the two valence quarks cooperate to stretch one colour field in the fragmentation
region. The result will to some extent depend on the position of the interacting quark (called the
I-quark) along the field, expressed by the scaled parameter x;. The I-quark loses its initial colour in the
interaction, whereas its energy is only gradually stored in the colour field. When the field is stretched
the fraction xy of its full length, the I-quark is stopped and the other quark (called L for leading)
continues and stretches the remaining fraction 1— x, of the colour field. When the field breaks into
pieces, the value of x; determines which hadron will contain the I-quark flavour.

-

&

_‘?ﬁ
—._
—___ 0

Fig. 5.3. Consider two meson bags approaching each other (the bags are Lorentz contracted). If the coloured parts overlap, the two bags can unite to
form one larger bag, which is stretched to a colour flux tube. The bag pressure retards the meson remnants. The colliding blob will lose all its
momentum before the other blob will be retarded. The bag is thus stretched to the same length as if alt the energy were carried by one of the
valence quarks.
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The relation in eq. (5.1) obviously corresponds to x; = 0. The probability for x; having larger values is
related to the wavefunction of the incoming meson. For pion fragmentation so many new u- and
d-quarks are produced in the process that it is difficult to see the effect of the I-quark. Actually, Monte
Carlo studies to be discussed below show that it is mainly seen in the possibility for the first rank
hadron to contain both the flavours of the incoming meson. This happens if z for the produced hadron
and x; are large, so that z + x; > 1. Unfortunately this enhancement of fast particles with the flavour of
the incoming meson is in phase-space situated below the diffractive peak, and is therefore difficult to
study experimentally.

For kaon fragmentation, the result is somewhat more sensitive to the x;-distribution when the
I-quark is a strange quark. Direct application of eq. (5.1) (corresponding to x; = 0) will give too small a
probability for a meson in the fragmentation region (z = 0.2) to carry the initial strangeness. In fig. 5.4
we show some results assuming the following probability distribution for x;

dP/de = 3(1 - x1)2 . (5.2)

We have here assumed equal probabilities for the two valence quarks in the initial kaon to be the
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Fig. 5.4. The distributions (1/0}(z/7) do/dz for (a) K'p->m*X, (b) K'p>m™X, (c) K'p— K"X, data from ref. [84]. The solid line corresponds to eq.
(5.1), i.e. to x;= 0, while the dashed line is the result with dP/dx; given in eq. (5.2).
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I-quark. An increased probability for the strange quark to be at larger z is also obtained if the
nonstrange one more often is the I-quark. This could be the case if the difference between the kaon and
pion cross sections is due to a smaller probability for the strange quark to interact, as in the additive
quark model. However, this will not reproduce the data for the reaction K™ > m* equally well (see fig.
5.4). In the bag model, the kaon bag is smaller than the pion bag. The more massive s-quark limits the
motion of the nonstrange quark. The different kaon and pion cross sections should then not be related
to different fixed cross sections for the strange and nonstrange quarks.

The result in eq. (5.1) is also obtained in the dual topological expansion scheme, where the original
valence quarks stretch two different colour-fields, but where the meson energy is very unevenly shared,
so that one of the valence quarks takes most of the energy [85]. In this scheme the leading meson can
never contain both valence quarks of the incoming meson. However, as mentioned above this is difficult
to study since it is masked under the diffractive peak.

Perhaps the strongest evidence for a picture where the particles are produced in the same kind of
colour force-field as in a quark jet, is the agreement for the reaction K* - A. Baryon-antibaryon pairs
are produced in e”e”-annihilation, and we thus expect this to be possible also in meson fragmentation.
In section 3.4 we showed that qq—qq pair production in the colour field can reproduce the observed
variation with W and xr in e*e” annihilation. In fig. 5.5 we show results for K* > A assuming
(anti)diquarks to be produced in the same way in the colour field behind a leading $-quark. The same
mechanism will also give the process K~ - A; however the agreement for K* > A is more striking
because here it cannot be a spill-over of the baryon number from the target fragmentation region.
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Fig. 5.5. The distribution xg- D(xg) for K'p—~> A X (110 GeV/c) and K*p-> AX (70 GeV); data from ref. [114].

5.2. Proton fragmentation

If we apply these ideas to proton interactions we expect that when one valence quark from a proton
interacts with another hadron (case (3) above) or is hit by a lepton (case (4)), the rest of the proton (a
diquark) continues and fragments in similar ways [80, 81). As mentioned above, not only are cases (3)
and (4) similar, they also resemble cases (1) and (2) if all particles, both mesons and baryons, are
included. This suggests that also in proton fragmentation an essentially linear colour triplet field is
stretched. If one of the valence quarks interacts with a virtual photon, a W* or another hadron, we can
imagine a reaction as shown in fig. 5.6. A colour field or flux tube is stretched in a stepwise manner such
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W, red

N green
S AAA S i blue

Fig. 5.6. One quark in a proton is hit by a virtual photon (or a W or another hadron), and a colour flux tube is stretched in a stepwise manner (cf. fig.
5.3).

that one valence quark (called L) is at the end of the force field followed by a partner (called J for
“junction”) in a diquark. In the case of a hadronic collision, the interacting quark (the I-quark) will not
stop immediately but follow after the J-quark. The colour field between the separated colours will be as
shown in fig. 5.7 and assuming that the linear properties of the force field are the most important it will
break into pieces as in fig. 5.8. (Although not shown in fig. 5.6, it will of course start to break long
before it is fully stretched out.) In that way we obtain a linear force-field with the same strength as in a
quark jet.

If the L-quark is red as in fig. 5.7, the I- and J-quarks are together antired, and the field between the
L- and J-quarks will be antired-red. Similarly the J- and L-quarks are together antiblue and the field
between I and J is blue-antiblue. We notice that the field changes direction at the J-quark so that when
a qg-pair is produced in the field, the quark is always pulled towards (and the antiquark away from) the
J-quark. Thus if the linear properties of the force field are most important we expect the jet to fragment into
hadrons in much the same way as a quark jet, with the exception that the part which happens to contain the
J-quark becomes a baryon instead of a meson. This is illustrated in fig. 5.8 in case there is
one break in the field between J and L.

We use the same production mechanism for quark-antiquark pairs as for a quark jet described in
section 2. Evidently the result will depend on the position of the J-quark along the field (in scaled units
x;). For the situation in fig. 5.8 one qg-pair is produced between J and L, and the first rank hadron is a

T b—2b b—=Bb b—05 —r

= b et
bb field Fr field
Fig. 5.7. The force field between the separated colours. The blue and Fig. 5.8. The resulting breakup structure in the baryon fragmentation
green quarks act together as an antitriplet, antired in colour, while the region.

green and red quarks act as an antiblue colour antitriplet.
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meson, containing the L-flavour. If the first break occurs instead behind the J-quark, then the first rank
hadron becomes a baryon containing the original diquark JL. Figures 5.9 and 5.10 show the analogues of
figs. 2.4 and 2.7. The treatment of the J-quark position in terms of a single scale invariant coordinate x;
means that it after turning is moving with a very large velocity in the rest frame of the original proton (fig.
5.10) or with a finite velocity in the total CM frame (fig. 5.9). We will return to this question below.

In this way the original LJ diquark structure is treated by a probability distribution to find the
J-quark at x;. This is related to the wavefunction of the initial proton. Thus the I- and J-quarks together
stretch the fraction x; and the L-quark stretches the remaining fraction (1 — x;) of the full field length.
From the resulting pion spectra we find that the distribution must vanish for x; = 0 and x;= 1. We have
not tried to make a best fit to experimental data but merely used the simple normalized distribution

dPldx; = 6x, (1 — xy). (5.3)

We also note that the final state distributions are rather insensitive to variations around this shape. With
our recipe to divide the force field into hadrons, this implies around 40% probability for a break
between the L- and J-quarks. Thus we have about equal probabilities that the final state baryon will
contain one or both of the initial flavours related to the L- and J-quarks; in this scheme it obviously
always takes at least one.

For hadronic collisions we assume, as in fig. 5.3 for meson collisions, that the I-quark is not
immediately stopped. For simplicity we assume that its orbit is parallel to J and that its scaled position
variable x; is evenly distributed between 0 and x;. This implies that the x;-distribution will be

dP/dx; = 3(1 - x,7. (5.4)

In that way the probability to find an original flavour in a central unit of rapidity space will decrease
as ~3m_/V's. This number is compatible with the charge asymmetry between pp and pp collisions at
the ISR [86].

In principle we could expect different x,-distributions in hadronic collisions and in leptoproduction
where the I-quark is directly kicked and moving at the other end of the force field. However, due to

lack of experimental information we assume the same x;-distribution in both cases.

J
Fig. 5.9. The analogue of fig. 2.4 for baryon fragmentation. The Fig. 5.10. The analogue of fig. 2.7 for baryon fragmentation. In this
trajectory of the J-quark is indicated. In this case it happens to go into Lorentz frame the J-quark moves “backwards” with very large velo-

the second rank hadron, which thus becomes a baryon. city, i.e., close to the light cone.
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calculation. The dashed line is obtained with a modification of the effect caused by finite colour-field lengths [81].
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An important point is the fact that the produced baryon has to be a symmetric state of three quarks
with regards to flavour and spin. As for BB production (section 3.4), we assume the production of each
baryon type to be weighted by the probability to find three quarks in a symmetric state with the proper
quantum numbers, if the new quarks are produced with random spin and flavour (except for the
suppression of s-quarks).

As before we also neglect particles with orbital angular momentum # 0 and only take into account
the ground state 56-multiplet. In the same way as vector mesons are suppressed relative to pseudoscalar
mesons, we also expect a suppression of the decuplet relative to the octet (cf. section 3.4). However, this
suppression will only give very small changes in the results presented in figs. 5.11 and 5.12.

For a leptoproduction event the flavour of the interacting quark is determined by the structure
functions (and the quark charges). For a hadronic reaction we expect equal probabilities for the three
valence quarks in the proton to correspond to the I-quark. As mentioned above, in about 60% of the
events the leading LJ-diquark is not split but goes into one baryon. In these events we assume that it
does not change its isospin and spin; we thus assume this diquark to be in the states uu (S =1); ud
(I=5=0), and ud (I = S =1) with the probabilities 1/3, 1/2 and 1/6 respectively, as given by SU(6).

A ud (I = § = 0) diquark is expected to be a more tightly bound system than the I = § = 1 diquarks.
(This is connected to the A°— 3° mass difference and probably to the difference in the u- and d-quark
structure functions for xg~ 1 [87].) Thus if an interacting u-quark (I-quark) originally forms a ud
(I = S = 0) with the d-quark in the proton, we expect this d-quark to be the J-quark, whereas the other
u-quark, which is more loosely bound to the I-quark, will be the leading quark (L-quark) at the end of
the force field. With SU(6) ratios for different diquarks we thus find the probabilities 1/12 and 11/12 for
the L-quark to be a d- or u-quark respectively. It is obvious that with equal probabilities for the three
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Fig. 5.12. Diquark fragmentation functions into mesons (a) and baryons (b). The experimental data on ud— 7*, #~ come from the reaction ¥p—> 7X
in ref. [93]. Note that z 1 corresponds to the target fragmentation region in this case. In connection with the baryon fragmentation distributions,
baryon-antibaryon production along the field is not included.
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valence quarks to be the L-quark, one could never reproduce the experimental result that #*/7~ ~ S for
large z. This must be a reflection of an asymmetry between the u- and d-quarks in the proton
wavefunction (related to the proton structure functions).

In contrast, for a leptoproduction event we expect that when one quark is kicked out of the proton
with a large momentum transfer, it loses its memory about to which of the two remaining quarks it was
more tightly bound. Thus we assume equal probabilities for the remaining quarks to be the L- and the
J-quark.

Our model is now fully determined (apart from transverse momentum properties discussed in
sections 5.3 and 5.4), and via a Monte Carlo program it is possible to study not only inclusive particle
spectra but also any kind of correlation. Some examples are presented in figs. 5.11 and 5.12 and we note
generally a very good agreement between the model and experimental data.

As discussed above (in section 2.5) we want to emphasize that low-energy jet systems, like in
neutrino interactions where the mean W is around 5 GeV, are naturally very sensitive to kinematical
effects. In particular the production of a heavy particle, a baryon, in the target fragmentation jet may
influence the forward jet also since the forward and backward jets are not well separated, in e.g.
rapidity. In fig. 5.13 we compare the momentum spectrum of protons in »p and »p interactions with
data from BEBC and note the importance of taking the limited experimental acceptance into account.
After all, our jet model works surprisingly well also at low energies (see also fig. 2.12).
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Fig. 5.13. Proton production in vp scattering. Data from BEBC [115} compared to model calculations.
5.3. String picture of hadron fragmentation
In section 2 we studied particle production in a straight smooth colour-field, and above we have

applied these results to the case when one quark is kicked out of a hadron. Due to the relative motion
of the quarks in the initial hadron, the colour field will not be completely straight. In this subsection we
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study the situation when the initial hadron is described by massless quarks connected by a string in a
yo-yo mode (for a meson) or by a Y-shaped string (for a baryon). We will see that if one of the quarks is
kicked out, the string will be stretched and fragment in the way described above. In particular for a
baryon one quark will be close to the junction which leads to the essentially linear picture described
above.

5.3.1. A model for meson fragmentation [108]

We start by treating a meson and assume that initially, before one of the quarks is kicked out, it
consists of a quark and an antiquark in a yo-yo mode. The results can also easily be generalized to more
complicated initial states. Thus, just before the interaction, the q- and g-particles are moving along the
string with momenta k and —k at a distance 2/ and after the momentum transfer the g-particle will
obtain the momentum Q + k. The subsequent motion shown in fig. 5.14 will be [108]:

1. The g-particle will move along the direction Q + k (having angle & with respect to the original
string direction) with the velocity of light and with constantly decreasing momentum.

2. A straight section L (with angle (7 — a)/2 with respect to the string) is formed and a disturbance (a
“corner’”’) A moves along the string at the velocity of light (carrying no momentum, however). The
transverse velocity of L is v, = cos(a/2).

3. The g-particle is at first accelerated along the original string. When it meets a corner A, a new
straight section L’ is formed and § is decelerated until its momentum is zero. The transverse velocity of
L' is v] = sin(a/2).

4, The G-particle is now pulled back along the string and in the lab frame g will move along a line
parallel to Q + k (the dashed line in fig. 5.14). In a Lorentz frame in which L' has v, =0,  moves in
and out along the string L'. The angle between the string segments L and L' is #/2 in the rest frame of
the original meson.

The string system will now move as a rigid body along Q + k, q is losing while q is gaining momentum.
The situation is evidently rather similar to the situation in fig. 2.7 when qo has turned around and g is moving
with a constant relative distance.

Fig. 5.14. The subsequent motion and decay of an initial quark—antiquark yo-yo state when the quark qp is given a momentum transfer.
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The main difference is that the string segments L and L’ carry momentum. Thus a piece d/ along L'
will have a momentum dp with components dp, transverse to Q + k and dp; along Q + k and an energy
dE [12, 108]

dp. = « dl tg(a/2) sin(a/2),
(5.5)
dp, = « dlsin(a/2), dE = k difcos(a/2).

There are similar relations for a piece along L.

Nevertheless, as we will show below, all the quantities relevant to the decay, depend only on the
“longitudinal projections”, i.e. only on the projections upon the direction Q + k. Further, when the
string breaks up by the formation of qg-pairs along the string segments L and L' then (with one
exception) the new subsystems are all left in yo-yo modes. The exception is the system containing the
corner A.

To see this, consider the production of a first pair q,q;, for simplicity assumed to be along L' at a
distance /' from the Go-particle at the endpoint. According to the results above, q, will be accelerated
along the dashed line indicated in fig. 5.14 forming a yo-yo system together with Go.

The energy and momentum of the system are in general small as compared to the energy and
momentum of the whole original system. The relevant variable in the target fragmentation region is the
lightcone variable

z = (E - pl)/(E - Pz)tot (5-6)

which for large energies coincides with the ordinary Feynman scaling variable. From egs. (5.5) we
obtain that for the system q,qo and /'

E-p=«lcos(a/2)=xl| (5.7)

i.e. (E—p;) only depends upon the projection of the string-piece I’ along Q+k. Actually we
immediately obtain that

l|'| = Z_L" (58)

where L, is the corresponding longitudinal size of the whole system.

The remainder system containing qo, the string-segments L and the remaining piece of L’ and the
new endpoint g, will continue to move as a rigid triangle with G, accelerated parallel to Q + k. For the
mass of this system, M, we obtain by applying the same considerations as above for a large total cm
energy W:

M?=~(1-27)W2. (5.9)

Further we note that if the production probability per unit time for a qg-pair is known in the rest
frame of the string, due to time dilatation it is proportional to Vi- v3 in a frame where the string
moves with transverse velocity v,. This implies that the production probability is also proportional to
the tension T = xV1— 2. Thus the probability to produce a pair in the string-element d/ in L' is
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prof)ortional to
V1-v2dl = dlcos(af2) = di. (5.10)

Comparing the results in egs. (5.8), (5.9) and (5.10) to the egs. (2.26)-(2.29) of section 2.3 we conclude
that the only difference is that all the relevant quantities are determined by the projections on the
direction Q + k. The same results would apply also if the meson Goq, contained the corner A. Then the
remainder system would move as a rigid stick. Actually this part of the system is then in a yo-yo mode,
Lorentz transformed at an angle to the string direction.

As in the one-dimensional case more and more mesons will break off, and the string-pieces
corresponding to these mesons will become shorter and shorter while the corresponding momenta
become larger and larger. In the current fragmentation region, where the mesons have z*-values of the
order 1, we obtain from the relation

2t 27 =miW? (5.11)

that z~ is of the order m?%/W?>. Consequently the size of the string-pieces is correspondingly small (cf.
eq. (5.8)).

All the meson states are in the yo-yo mode except for the one in the target fragmentation region
which contains the corner A in fig. 5.14. Actually, in this case the quark and antiquark will move along
the sides of a triangle (in the CM frame) [108]. Therefore, if the projection of this triangular mode upon a
physical meson state is similar to the projection of the yo-yo mode, then the breakup distributions in the
target fragmentation region are not different from the ones obtained in the one-dimensional model.

With regard to the transverse degrees of motion (with respect to the direction Q + k) we note from
eq. (5.5) that the string-pieces carry transverse momentum proportional to the size of the string at the
time of production. Since the mesons in the current fragmentation region take very short pieces (in the
lab system), they will obtain transverse momenta from this source only to the order m?%/W?, The total
transverse momentum of the string system, equal to —k_, is therefore partitioned among the mesons of the
target fragmentation region. The particles with largest z~ will take the main part, but the precise properties
of this distribution also depend on our assumption that the original state before the transfer of Q is a yo-yo
mode. For a more complicated state we will obtain a different shape of the string. This will, however, not
affect the properties of the current fragmentation region because the mesons in this part of the phase space
stem from a very small piece close to the end of the string.

Thus we conclude that if a quark in a mesonic system is hit by a virtual photon or weak interaction
probe with momentum Q, we obtain a quark jet with momentum Q+ k of the same nature as in
e*e” annihilation. This happens in spite of the fact that the string has a finite angle to the jet direction,
even at infinite energies. (This angle is small, however, in a Lorentz frame in which the mesons in the
current fragmentation region have low momenta.) Here k is the momentum of the quark at the time it
is hit. The remaining momentum in the system, —k, is divided among the particles in the target
fragmentation region in a manner such that a particle with a large z~ takes a large fraction.

5.3.2. A model for baryon fragmentation [94]

We now turn to the case of an initial baryon. We will assume that the (massless) quarks move
symmetrically at the ends of three string-pieces, joined in a junction as shown in fig. 5.15. The junction
itself will in this picture not carry any energy-momentum — it is only a device which moves in such a way
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Fig. 5.15. A Y-shaped baryon string model in the rest system. The quarks are at the endpoints of the string.

a b c

Fig. 5.16. The motion of the Y-shaped baryon string in case the quark marked a is made to move along the direction V by an interaction (a). In this
example the angles 8 and ¢ in eq. (5.12) are #/2 and 0 respectively. In (b) the quark a moves away along V with an adjoining string segment, and a
corner moves with the velocity of light towards the junction. In (c) a set of positions in time are marked out with the strings marked by full lines, the
quark trajectories with dashed lines and the trajectory of the junction by a dotted line. In position 2 the quarks b and c are at the “old”
turning points and will henceforth be accelerated in new directions.

that the total tension at rest of the three string-pieces vanishes. It is not difficult to show that, on the
average, half of the energy of the system is kinetic energy of the quarks and the other half potential
energy in the strings (“glue”). In fig. 5.16 we show the motion of this system if one of the valence quarks
is made to move in the direction V due to an interaction with another hadron or with a lepton in a deep
inelastic scattering event. When the quark a moves away, a bend on its adjoining string-piece will move
towards the junction with the velocity of light. It reaches the junction at the same time as the other two
quarks (provided the three quarks are moving towards the junction at the moment of the collision).
After this the junction will move with a constant velocity d;, which depends on the direction V of the
quark a. We note that the force from a string on a massless quark is always along the quark motion and
the quarks b and ¢ will continue to the “old” turning points (position 2). When they turn around they
will, however, be accelerated in a new direction, such that in a Lorentz frame in which the adjoining
string-piece is at rest, the quark will just move along the string. We note that when they stop, one of the
quarks (b in fig. 5.16) is close to the junction whereas the other one (c) is much farther away. A simple
calculation tells us that the energy available in the string-piece adjoining c is in general large enough to
produce qq pairs, thereby producing a meson containing the quark c.

For the quark b, however, the situation is always such that it will end up too close to the junction for
any possible particle production. Thus the quark b and the junction will always end up in the same final
state hadron which then becomes a baryon.
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We have only discussed the situation when all the quarks are moving “inwards” at the time of the
interaction with a. The other situation when all move “outwards” will result in an almost identical final
state situation.

We have evidently in this semi-classical model obtained a dynamical situation very similar to the one
described in section 5.2, with a, b and c taking the roles of I, J and L respectively. There are, however,
two differences. First, there will be a piece of the string between the quark b and the junction where the
string cannot break. This will have the same effect as if the J-quark had a finite mass. If we interpret fig.
5.10 as a picture in momentum-space rather than in coordinate-space, there will be a narrow region
around the J-quark trajectory where new pairs cannot be produced. We will here neglect this effect.

More important is that the junction moves with a finite velocity. If the string does not break, the
b-quark will move back and forth through the junction a number of times, but after some time the
c-quark, which moves with the velocity of light, will catch up. If the string has not broken before, we
will assume that it will no more be possible to break it between the c-quark and the junction.

As will be discussed in sections 5.5 and 5.6 this is important for the possibility to produce the heavier
strange quarks or quarks with large p, in the region between J and L.

The velocity of the junction will depend on the direction V of the “kick” in fig. 5.16. Let this
direction be described by the polar angles 6 and ¢ in a frame where the kicked quark initially moved
along the z-direction and the other two quarks in the xz-plane. Then the velocity v; of the junction (in
the original proton rest frame) after it has been passed by the quarks and the bend in fig. 5.16 is given
by the expression

02_9sin298in2¢>+%sin20c052£+1+2c050+c0520

T (COS 09— é)z (512)

Thus we find that the average value of v7 is given by
(v7)=(0.697. (5.13)

It turns out that a velocity-change from v; =1 to v;=0.7 hardly affects the possibility to produce
nonstrange quarks with ordinary p,. Thus the particle spectra in figs. 5.11 and 5.12 will not be
noticeably changed, only the size of the A production spectrum will be a bit smaller. However, the small
fraction of events with production of heavier strange quarks or quarks with large k, will be suppressed.
This will be discussed further in section 5.5 and will have important consequences for the polarization of
hyperons as will be discussed in section 5.6.

5.4. Transverse momentum properties

In sections 5.1 and 5.2 we presented inclusive spectra for various reactions integrated over p.. In this
subsection we will consider the transverse momentum properties in the proton fragmentation region in
some detail.

In addition to the p, of the produced qd-pairs we also have to consider the primordial k., i.e. the
transverse momentum of the valence constituents in the original hadronic bound state. To account fully
for the properties of these contributions one needs a complete picture of the baryon wavefunction.
Lacking such a picture we will be satisfied with the following simplified assumptions compatible with the
hadron-string models presented above.
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(1) The three valence-constituents, which in accordance with the considerations in the first two
subsections will end up as the L-, J- and I-quark along the force field, will each be given a Gaussian
transverse momentum distribution

dP; = &’k exp k%o, ji=LJL (5.14)
with the constraint that
kJ_I+kJ_J+kJ_L=0. (5.15)

We will in that way have a parametrization with in principle a parameter ¢’ at our disposal.

(2) This primordial transverse momentum is transferred to the final state hadron in the same way as
the tunneling contribution. Thus the p, of a hadron is the vector sum of the k, of its two (for a meson)
or three (for a baryon) constituents.

In fig. 5.17 we present the p,-spectrum for protons and A -particles obtained with a value of ¢’ such
that

<k2L>I,JorL = %0’12 = (04 GeV/C)2 . (516)

We note that this is consistent with the primordial k, carried by a quark in a DIS-event (cf. section 4.6.2)
(when also soft gluon emission is accounted for). As a further check of the xg and p,-distributions we
present in fig. 5.18 the baryonic jet profile defined in accordance with the Ochs-Stodolsky con-
siderations [96]. The variable A is defined as

A = xelp. (5.17)

with xg the ordinary Feynman scaling variable.
We compare the results to experimental data and note a general good agreement.

INELASTIC

107 v y \
0 10 20 p° (Gev/c)

Fig. 5.17. The transverse momentum distribution of the protons, A- and 5 -particles in a baryon fragmentation region according to the model.
Experimental results for A from ref. [95] are normalized with Guondif, inelastic = 26 mb.
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Fig. 5.18. The Ochs-Stodolsky jet profiles for baryon number dB/dA, energy fraction de/dA and charge (displayed as dQ/de) with A = xg/p,.
Experimental data from [96, 97]. The curves are calculated for the experimental beam momentum, 24 GeV/c.

5.5. Suppression of strange quarks and large k, between the leading quarks

In the string picture developed in section 5.3 the junction and the J-quark move with a finite velocity.
To see the significance of this effect it is useful to consider fig. 5.19. We note that in order to produce a
first rank - or K-meson a new qg-pair must be produced along the hyperbolae marked 7= and K
respectively. If the J-quark (and the junction) moves with a velocity close to the velocity of light (fig.
5.19a), then both pions and kaons can be produced with values of z between 0 and (1 — x;). When the
junction moves with a finite velocity (fig. 5.19b) then it is obvious that the more massive kaons will have
a much more restricted z-range available.

In the string picture there will be a correlation between the velocity of the junction (which depends
on the direction V of the “kick” in fig. 5.16) and the value of x; (which however also depends on the
phase in the quark motion at the time of the “kick”). We will study the string motion and these
correlations in more detail in future work. For the studies presented here we assume that it is sufficient
to give the junction a constant velocity vegecuve in the rest frame of the initial proton. For the results
presented below we have been guided by the string picture and used (cf. eq. (5.13))

ver= V{03 =0.69. (5.18)
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/uXJ

Fig. 5.19. A final state pion or kaon can be formed by the L-quark and an antiquark produced along the hyperbola marked 7 or K respectively. If
the J-quark moves with very large velocity in the initial proton rest frame (a), both pions and kaons can be produced with z-values between 0 and
1- x;. If the J-quark moves with lower velocity (b) the z-range for kaons in particular is more restricted.

The way this suppresses the production of strange quarks can be understood from fig. 5.26 below. To
produce a 3~ particle, two new quarks, one s and one d, have to be produced, one on each side of the
J-quark. In fig. 5.26 the fraction of events in which the new quark between J and L is the s- or the
d-quark is denoted by V and Ib respectively. Curve IV describes the fraction corresponding to BB-pair
production.

Similarly the production of quark-pairs with large transverse momenta is suppressed between J and
L. A larger transverse mass for the first rank meson is suppressed just as the kaon is suppressed
according to fig. 5.19. Also the suppression of large I' in eq. (3.20) will suppress large k. in the small
string segment between J and L. According to our Monte Carlo simulations the k -distributions turn
out to be effectively Gaussian, with widths such that

<ki>u segment — 009(GCV/C)2 5 <ki>behind1 = 018(GCV/C)2 . (519)
These results are obtained for both strange and nonstrange quarks.
5.6. Hyperon polarization in proton fragmentation

Since momentum distributions of the produced hadrons often are largely governed by the lon-
gitudinal phase-space, polarization phenomena offer an extra tool to gain insight into the hadronization
process. Polarization effects were commonly expected to die away quickly with increasing energy and it
came as a surprise when strong polarization effects in the inclusive production of A-particles were
observed even at FNAL and ISR energies. This cannot be explained from hard scattering processes as
calculated in perturbative QCD, and therefore it must be a result of the soft confining interactions. We
also note that the observed polarization is not a large angle phenomenon; instead it seems to saturate
already at p, ~1GeV/c.

5.6.1. Polarization mechanism [98]

When a quark-antiquark pair is produced in a colour field, we note that (cf. section 3) while a
massless pair can classically be produced in a single point in space-time and afterwards be dragged apart
by the force field, a pair with (transverse) masses u, must classically be produced at a distance 2! such
that the field energy in between equals the produced masses (cf. eq. (3.2)).
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If the colour field has no transverse excitations, then transverse momentum must be conserved and
the qg-pair is produced with equal and opposite k,. Quantum mechanically the pair production can be
treated as a tunneling phenomenon with a (virtual) pair produced in a space-time point and afterwards
tunneling out through a linear potential. As discussed in section 3, this leads to a Gaussian distribution
ink,.

From fig. 5.20 it is evident that such a pair will carry an orbital angular momentum L of the order

|| =20k, =2k, u,/k. (5.20)

If the force field is nonexcited with respect to transverse degrees of freedom, the orbital angular
momentum L must be compensated by the pair becoming polarized in the opposite direction. We note
that in order for this description to be consistent it is necessary that the k,-distribution is such that
angular momenta L>1 are suppressed. Since eq. (5.20) implies that L =1 for k, =0.3 GeV/c this is
indeed the case.

A similar result is also obtained if quarks are more frequently produced in spin states which are
energetically favoured by the Thomas precession term in the Hamiltonian [99]. In the following we
study how this polarization effect can be observed in the polarization of hyperons produced in proton
fragmentation. Most experimental data are for pp-collisions but our model predicts similar effects for
leptoproduction.

5.6.2. A-polarization

The A-particle is particularly easy to study. Firstly, in the constituent quark model it contains beside
the strange quark a ud-pair which has spin zero, thus the spin of the A is the spin of the s-quark.
Secondly a A-particle clearly exhibits its polarization via its weak decay.

If we look at a A-particle produced with large z it is according to our model usually formed by
producing a strange quark in the field behind a ud-diquark from the initial proton. In refs. [98, 94] we
studied the polarization of A-particles produced by this mechanism, which should dominate in the
large-xg limit.

For the polarization of the s-quark we assumed that it increased with the orbital angular momentum
L of the produced ss-pair according to the relation

pa=LI(B+L) (5.21)
where the parameter B is expected to be in the range 1-2.

If the A is produced with a definite p,(A) also the s-quark tends to have its transverse momentum in
this direction. We note that if both the s-quark and the ud-diquark have Gaussian distributions (as is

24,/

Fig. 5.20. A quark and an antiquark with transverse momenta ky and -k, are produced at a distance 2u/« from each other. They carry an orbital
angular momentum L which is compensated if the spins are polarized in the opposite direction.
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Fig. 5.21. The polarization of A -particles (along 54 X py) in proton fragmentation regions as a function of p,. Data from ref. [100] and the dashed
lines correspond to upper and lower limit for model predictions for large xg.

assumed above) with widths o, and o, respectively we find

2
<pl(s) |”“ |> =T =Pl (5.22)

- 2
Pia Oq

The resulting polarization for A-particles as a function of p, is shown in fig. 5.21 and we note a good
agreement with ISR-data obtained at large xg-values.

For lower values of xg, A-particles can in our model be produced by the following different
mechanisms:

(Ia) The A-particle stems from a (ud), composed of the L- and J-quarks with the s-quark produced
behind the J-quark.

(Ib) The A -particle stems from a (ud), composed of the J-quark and another (u or d) quark from a
piece produced between L and J together with and s-quark produced behind the J-quark.

(IT) The A-particle stems from a (ud), built from the J-quark and a (u or d) quark produced behind it
(or possibly the I-quark) while the s-quark stems from the field in between the J- and L-quark.

(IT1) The A-particle stems from the decay of a primarily produced 3° or a Y*.

(IV) The A-particle is one of a pair from baryon-antibaryon production along the force field.
BB-pairs can be produced when a diquark-antidiquark pair (colour 3-3) is produced in the field. We
assume that this occurs with the same probability as in a quark jet as described in ref. [41].

In fig. 5.22 we exhibit the fractional A-particle production according to the mechanisms (I)-(IV)
(fr-fiv) as a function of xr for large energies. (For this purpose we do not differ between (Ia) and (Ib).)

According to our production model the x¢ and the p,-distributions do to a large extent factorize for
a given production mechanism. Due to the Gaussian character of the k,-distributions both for the
tunneling production and for the primordial contributions, the mean s-quark transverse momentum is
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Fig. 5.22. The fractions of A-particles produced with the mechanisms Fig. 5.23. The ratio in eq. (5.23) is shown as the full line correspond-
I-IV in the main text as functions of xr in a proton fragmentation ing to the model prediction for A-polarization normalized to 1 at
region. (The calculations are for 400 GeV/c proton lab. momentum.) xr=1. In e.g. a proton-proton interaction, A’s stemming from the

opposite hemisphere (xg<0) are polarized oppositely and the resul-
ting subtracted prediction is shown by a dashed line.

proportional to the A transverse momentum. For the production mechanisms (Ia) and (Ib) the s-quark
and therefore also the A -particle should be polarized along the direction p; X pyroton. For the production
mechanism (IT), where the s-quark will be pulled by the field in the opposite direction, the polarization
should be opposite to p4 X pp.

A-particles stemming from the decay of 3° and Y* should retain some part of the original particle
polarization. This contribution will be rather small - although we expect it to be in the same directions
as the one from production mechanisms (Ia) and (Ib)- and we will neglect it henceforth.

Finally, for the reaction mechanism (IV) we do not expect any A polarization, at least not along the
normal to the beam-A -plane. In fig. 5.23 we plot the ratio

f1+fnl+— f12+ fiv (5.23)

as a function of xg and we expect that for a fixed p, and with the absolute size of A polarization given at
xe =1 this should provide a prediction for the A polarization in the whole fragmentation region. We
note that the dependence on x¢ is almost linear, as is also indicated by the experimental data [101]

5.6.3. 3° 3* polarization

In the constituent quark model the 3° and 3* are ((ud),s) and ((uu),s) states respectively with the
index on the diquark corresponding to spin and isospin 1. Since the 3° and 3* are both spin 1/2
particles, their polarization will be opposite to the produced s-quark polarization and its size will depend
upon to what extent the corresponding spin-1 diquark is polarized by itself. These diquarks are often
““spectators” in the ordinary notation, i.e. they may stem from the original proton wavefunctions, and
therefore they should exhibit no polarization according to conventional wisdom. There are in our
opinion reasons to believe that the production mechanisms will favour spectator polarizations [99, 109].
If we neglect the question of the absolute size of the 3° polarization, we may, however, estimate the
xe-dependence just as for the A-particle. The production mechanisms (I)-(IV) discussed above are
available also for the 3°- and 3*-particles, and in fig. 5.24 we depict the relative fractions for different
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Fig. 5.25. The ratio in fig. 5.23 for the A-particles shown for 2° and 3*.

xe-values. We also show in fig. 5.25 the ratio (5.23) as a measure of the expected 3° and 3*
polarizations along the direction pyrotwon X Ps.

5.6.4. X polarizations

In order to produce 3~ ((dd),s) or 5{(ss),d or (ss),u} in a proton fragmentation region, it is necessary
to produce at least two new quarks for the hyperon. For 3~ it is possible to take one of the d-quarks
from the initial proton. In our model this quark is then the J-quark and we have the following
possibilities:

(Ib) The s-quark stems from behind the J-quark and the new d-quark from the string segment
between J and L.

(V) The s-quark stems from between J and L and the new d-quark from behind J.

(ITIT) Decay of Y*-particles.

(IV) 2~ -particles produced via the BB-pair production mechanism.

According to our model the produced 3~ -particles will be polarized upwards (i.e. along Pproton X Ps-)
as the combined effect of the following properties

1: The quark behind the J-quark (s or d in case (Ib) and (V) respectively) is polarized upwards and
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the quark between J and L (s or d) is polarized downwards, because it is pulled in the opposite direction
by the colour field.

2: Mechanism (Ib) dominates over (V).

As discussed in section 5.5 the production of strange quarks is suppressed in the LJ segment of the
string. In fig. 5.26 we show the fractions of produced 3~ according to the mechanisms (Ib), (IV) and (V).
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Fig. 5.26. The fractions for 3~ from the different reaction mechanisms described in the main text.

Because the p,-spectra for the produced quarks are approximately Gaussian (cf. eq. (5.19)), the
transverse momentum and thereby the polarizations of the produced quarks will increase linearly with
the transverse momentum of the 3~. We note that according to the additive quark model, the different
possible quark polarizations will affect the final state 3~ in different ways. To see that we assume that
the three quarks, d (and J-quark), d (the produced d-quark) and s have polarizations a,, a, and a;
(-1=a;=1,i=1,2,3) respectively. The spin wavefunction for a 3~ with spin up (m,= +1/2) is given
by

Us-()=VI++ ) - Vi+ - ) - VI-++) (5.24)
in easily understood notation. With the quark polarization given above and with the assumption that all

phases are randomly distributed, the probability that the spins add up to a total spin 1/2 pointing
upwards, i.e. give a 3~ with spin up, is given by

B (59 (1594559 (59 () 05 () (). o9

Consequently, the resulting 3~ polarization, Ps-, is

Aoyt az)—az—3ay0p0; :
Py = 3+ ajar—2as(ay +az) (5.26)

This result is illustrated in fig. 5.27. In fig. 5.27a we assume that the spectator J-quark is unpolarized
(a1 = 0) and show the 3~ polarization, Ps-, as a function of the polarization of the other two quarks, a»
and as. We note that the production mechanism (Ib) (a» >0, a3 <0) will give P >0 and mechanism (V)
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Fig. 5.27. Level curves for fixed polarization of 3~ as functions of the polarization of the produced d- (a,) and s-quarks (a3) when the polarization of
the J-quark is @; = 0 (a) and a; = 0.5 (b).

(a2<0, a3 >0) will give P<0. We also note that the influence of the d-quark polarization (a») is
stronger than that of the s-quark. If mechanism (Ib) dominates over (V), obviously 3~ will be polarized
upwards.

As mentioned above it is possible that the initial J-quark is polarized upwards. In fig. 5.27b we show
the 3~ polarization assuming that a; = 0.5 (50% polarization). We note that this will increase the 3~
polarization but it will not change the sign. Thus without a detailed model for the possible polarization
of the J-quark it is not possible to give a quantitative prediction for the 3~ polarization, although
qualitatively we obtain 3~ polarization in the same direction as for 3* and 3°. This was pointed out
already in ref. [102].

We note that in case both the produced quarks for the 5~ stem from a field behind the J-quark like
in a recombination model [103], then a Thomas precession mechanism [99] would give both a, <0 and
a3<0. According to fig. 5.27 this mechanism would then result in a 3~ polarization which is either very
small or in the opposite direction from the one found for 3* and 3°. Experimental results show that this
is not the case [104] and this fact provides a strong indication for the essentially one-dimensional
force-field production presented here, where the new quarks stem from both sides of the J-quark.
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E polarization

To produce a & it is necessary to produce two new s-quarks. In our model one is produced on each
side of the J-quark, and therefore they tend to be polarized in opposite directions. On the other hand,
to form a & the s-quarks must form a triplet spin state, an (ss),. If one of the two s-quarks has larger k,
it will thus have a strong polarization effect and the whole ss-pair will be polarized accordingly. The
combined polarization property of the pair is related to the sum of the orbital angular momenta
obtained according to fig. 5.20, i.e.

Ly + Ly, = 2p11kax — parkay )k 6.270

Here the x-direction is chosen along p, = and z along Pyroton X P=. Since k| ; and k, have approximately
Gaussian distributions we obtain

L AR TN (5:29)

With the widths given in eq. (5.19) we have (k%;)=2(k3,). Therefore an estimate of the angular
momentum in accordance with egs. (5.26) and (5.27) would be a linear rise with p, =:

le + LZZ = %<ML>pLE/K . (529)

Thus due to the smaller mass available in the string-segment between the L- and J-quark we expect the
E-particle to be polarized in the same direction as a A-particle.

Once again in case the J-quark is polarized upwards the 5 polarization will increase but not change
its direction.

6. High-p, scattering and topological properties of the colour field

In the Lund model hadrons are produced from the energy in the colour field. Thus in processes with
many quarks and gluons the way these are connected by the confining colour-field is important for the
way the final state hadrons are produced. This field topology must be taken into account because a
confining field cannot be described solely in terms of the positions of the colour charges, as is the case
for Coulomb potentials in electrodynamics.

As an example, in an e"e” - qqgg event the colour field can be stretched in two different ways as
shown in fig. 6.1. We note that this problem is not specific for the Lund model where the gluons are
treated as kinks on the stringlike field. The same ambiguity is present also if the gluon is attached to an
octet field as in fig. 6.2. Another example is shown in fig. 6.3 which describes the process gg—>gg in a
high-p, event. Here the final state contains also the remnants of the incoming hadrons which, due to the
emission of the scattered gluons, are colour octets just like gluons. Thus the final state contains four
colour octets which can be connected in six different ways. We note that the orientation of the field
(defined such that when a qg§-pair is produced the q is pulled along and the g against the field direction)
is significant and in principle measurable via e.g. KK correlations.

In perturbative QCD it is possible to compute amplitudes for the different colour combinations of
the partons which can be associated with the different configurations for the colour fields [105].
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Fig. 6.1. In an ¢*e” — qGgg event the colour field can be stretched in Fig. 6.2. Colour-field configurations as in fig. 6.1 but with a Montvay-
two different ways. gluon (cf. section 4). The heavy lines denote colour octet fields.
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Fig. 6.3. Gluon—gluon scattering in a high-p, event. The incoming (outgoing) gluons are called 1, 2 (3, 4). The hadron remnants 1 and 2 are also
colour octets and continue stretching the colour field in the same way as gluons. The colour field between the four outgoing octets can be stretched
in six different ways.

However we note that this way to identify noninterfering amplitudes for the different configurations is
only unique in the case with infinitely many colours.

In e.g. a high-p, event the fast hadrons in the different jets are insensitive to the way the jets are
connected. The distributions of these hadrons have been studied extensively in the literature by many
authors. However, if we want to describe the whole event, including the particles with smaller
momenta, we must for each subprocess (qq—qq, qq— gg, qg— qg etc.) compute the amplitudes for all
the possible field configurations [106].

Another problem arises because we expect a smooth transition between high-p, and low-p, events.
As discussed in section 5 it seems as if in a low-p, event a colour triplet field is stretched in the
fragmentation region of an initial proton or meson. In the gg-scattering event illustrated in fig. 6.3 the
initial hadron has lost a gluon and continues as a colour octet, stretching a colour octet field or two
colour triplet fields. It is then natural to expect that these two triplet fields are not stretched all the way
to the end, and that e.g. the field in fig. 6.3 has to be modified as shown in fig. 6.4. In this way it would
be possible to obtain a smooth transition between low p, and high p,.
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Fig. 6.4. If the colour flux tubes in (a) (the configuration in fig. 6.3 case c) are modified as in (b), it is possible to get a smooth transition between
high-p, events and low-p, events as described in section 5.

Thus extensive studies of high-p, events, including low-momentum particles and correlations, are
important in order to learn how the confining fields are stretched. However the problem is complicated
both due to the amount of competing subprocesses and because the observable effects are in general
rather small. A simpler situation with fewer subprocesses, but where the same problems appear, is
offered by direct photon production, which thus could give valuable information. In ref. [107] it is
demonstrated that in this case multiplicity- and p,-spectra show sizeable, experimentally measurable
asymmetries. In fig. 6.5 we show a forward-backward asymmetry for the associated hadrons when
triggering on a high-p, photon in the direction 6, ~20°. This result is obtained assuming that the
colour field is stretched by the initial proton remnant as shown in fig. 6.4a, and a smaller asymmetry at
lower values of p,;, would indicate that the field is stretched more like in fig. 6.4b.

However since very little experimental information is available at present, we will not go into the
details here but refer the reader to the original literature [106, 107].

P
y=-0.5 W y=05 ddN
y=-10 ¥=10 Fow
y=15
PP
V5 = 63 GeV
P > 3 GeV/e
155°< 4. < 165°
1\ g
5
o)
[—— -
T = — —
20 - C _- PN
@ 1 © (evre)

Fig. 6.5. p,-compensation for a prompt photon trigger with polar angle between 155° and 165° and with p, =3 GeV/c, in pp scattering at
Vs = 63 GeV. (a) indicates how the particles are produced in momentum space from the colour fields if the photon is produced in the hard reaction
qg~q7. Due to the softer gluon structure function, the photon is usually emitted opposite to the incoming gluon direction. (b) shows dN/dp, for
hadrons with 1.0 <y < 1.5 (full line) and hadrons with —1,5 < y <—1.0 (dashed line), and the difference between these distributions (dash-dotted
line).
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